Articles | Volume 6, issue 2
https://doi.org/10.5194/ascmo-6-141-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-6-141-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nonlinear time series models for the North Atlantic Oscillation
Thomas Önskog
CORRESPONDING AUTHOR
Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
Christian L. E. Franzke
Meteorological Institute and Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
School of Engineering and Science, Jacobs University, Bremen, Germany
Abdel Hannachi
Department of Meteorology, Stockholm University, Stockholm, Sweden
Related authors
No articles found.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024, https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Short summary
In the online seminar series "Perspectives on climate sciences: from historical developments to future frontiers" (2020–2021), well-known and established scientists from several fields – including mathematics, physics, climate science and ecology – presented their perspectives on the evolution of climate science and on relevant scientific concepts. In this paper, we first give an overview of the content of the seminar series, and then we introduce the written contributions to this special issue.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 1–12, https://doi.org/10.5194/ascmo-6-1-2020, https://doi.org/10.5194/ascmo-6-1-2020, 2020
Short summary
Short summary
Trends in gridded temperature data are commonly assessed independently for each grid cell, ignoring spatial coherencies. This may severely affect the interpretation of the results. This article proposes a space–time model for temperatures that allows for joint assessments of the trend across locations. In a case study of summer season trends in Europe, it is found that the region with a significant trend under spatial coherency is vastly different from that under independent assessments.
A. Hannachi and A. G. Turner
Nonlin. Processes Geophys., 20, 725–741, https://doi.org/10.5194/npg-20-725-2013, https://doi.org/10.5194/npg-20-725-2013, 2013
Related subject area
Atmospheric science
Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information
A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Postprocessing ensemble forecasts of vertical temperature profiles
Using wavelets to verify the scale structure of precipitation forecasts
Automated detection of weather fronts using a deep learning neural network
Low-visibility forecasts for different flight planning horizons using tree-based boosting models
Skewed logistic distribution for statistical temperature post-processing in mountainous areas
Hourly probabilistic snow forecasts over complex terrain: a hybrid ensemble postprocessing approach
A statistical framework for conditional extreme event attribution
Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles
A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors
Characterization of extreme precipitation within atmospheric river events over California
Jhayron S. Pérez-Carrasquilla, Paola A. Montoya, Juan Manuel Sánchez, K. Santiago Hernández, and Mauricio Ramírez
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 121–135, https://doi.org/10.5194/ascmo-9-121-2023, https://doi.org/10.5194/ascmo-9-121-2023, 2023
Short summary
Short summary
This study uses tree-based machine learning (ML) to forecast PM2.5 in a complex terrain region. The models show the potential to predict pollution events with several hours of anticipation, and they integrate multiple sources of information, including in situ stations, satellite data, and deterministic model outputs. The importance analysis helps understand the processes affecting air quality in the region and highlights the relevance of external sources of pollution in PM2.5 predictability.
Vitaly Kholodovsky and Xin-Zhong Liang
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021, https://doi.org/10.5194/ascmo-7-35-2021, 2021
Short summary
Short summary
Consistent definition and verification of extreme events are still lacking. We propose a new generalized spatio-temporal threshold clustering method to identify extreme event episodes. We observe changes in the distribution of extreme precipitation frequency from large-scale well-connected spatial patterns to smaller-scale, more isolated rainfall clusters, possibly leading to more localized droughts and heat waves.
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020, https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Short summary
A new method for weather and climate forecast model evaluation with respect to observations is proposed. Individually added values are estimated for each model, together with shared information both models provide equally on the observations. Finally, shared model information, which is not present in the observations, is calculated. The method is applied to two examples from climate and weather forecasting, showing new perspectives for model evaluation.
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020, https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Short summary
State-of-the-art statistical methods are applied to postprocess an ensemble of numerical forecasts for vertical profiles of air temperature. These profiles are important tools in weather forecasting as they show the stratification and the static stability of the atmosphere. Flexible regression models combined with the multi-dimensionality of the data lead to better calibration and representation of uncertainty of the vertical profiles.
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020, https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary
Short summary
Two-dimensional wavelet transformations can be used to analyse the local structure of predicted and observed precipitation fields and allow for a forecast verification which focuses on the spatial correlation structure alone. This paper applies the novel concept to real numerical weather predictions and radar observations. Systematic similarities and differences between nature and simulation can be detected, localized in space and attributed to particular weather situations.
James C. Biard and Kenneth E. Kunkel
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019, https://doi.org/10.5194/ascmo-5-147-2019, 2019
Short summary
Short summary
A deep learning convolutional neural network (DL-FRONT) was around 90 % successful in determining the locations of weather fronts over North America when compared against front locations determined manually by forecasters. DL-FRONT detects fronts using maps of air pressure, temperature, humidity, and wind from historical observations or climate models. DL-FRONT makes it possible to do science that was previously impractical because manual front identification would take too much time.
Sebastian J. Dietz, Philipp Kneringer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 101–114, https://doi.org/10.5194/ascmo-5-101-2019, https://doi.org/10.5194/ascmo-5-101-2019, 2019
Short summary
Short summary
Low-visibility conditions reduce the flight capacity of airports and can lead to delays and supplemental costs for airlines and airports. In this study, the forecasting skill and most important model predictors of airport-relevant low visibility are investigated for multiple flight planning horizons with different statistical models.
Manuel Gebetsberger, Reto Stauffer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 87–100, https://doi.org/10.5194/ascmo-5-87-2019, https://doi.org/10.5194/ascmo-5-87-2019, 2019
Short summary
Short summary
This article presents a method for improving probabilistic air temperature forecasts, particularly at Alpine sites. Using a nonsymmetric forecast distribution, the probabilistic forecast quality can be improved with respect to the common symmetric Gaussian distribution used. Furthermore, a long-term training approach of 3 years is presented to ensure the stability of the regression coefficients. The research was based on a PhD project on building an automated forecast system for northern Italy.
Reto Stauffer, Georg J. Mayr, Jakob W. Messner, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 65–86, https://doi.org/10.5194/ascmo-4-65-2018, https://doi.org/10.5194/ascmo-4-65-2018, 2018
Short summary
Short summary
Snowfall forecasts are important for a range of economic sectors as well as for the safety of people and infrastructure, especially in mountainous regions. This work presents a novel statistical approach to provide accurate forecasts for fresh snow amounts and the probability of snowfall combining data from various sources. The results demonstrate that the new approach is able to provide reliable high-resolution hourly snowfall forecasts for the eastern European Alps up to 3 days ahead.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Jérôme Pernin, Mathieu Vrac, Cyril Crevoisier, and Alain Chédin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, https://doi.org/10.5194/ascmo-2-115-2016, https://doi.org/10.5194/ascmo-2-115-2016, 2016
Short summary
Short summary
Here, we propose a classification methodology of various space-time atmospheric datasets into discrete air mass groups homogeneous in temperature and humidity through a probabilistic point of view: both the classification process and the data are probabilistic. Unlike conventional classification algorithms, this methodology provides the probability of belonging to each class as well as the corresponding uncertainty, which can be used in various applications.
Laura D. Riihimaki, Jennifer M. Comstock, Kevin K. Anderson, Aimee Holmes, and Edward Luke
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 49–62, https://doi.org/10.5194/ascmo-2-49-2016, https://doi.org/10.5194/ascmo-2-49-2016, 2016
Short summary
Short summary
Between atmospheric temperatures of 0 and −38 °C, clouds contain ice crystals, super-cooled liquid droplets, or a mixture of both, impacting how they influence the atmospheric energy budget and challenging our ability to simulate climate change. Better cloud-phase measurements are needed to improve simulations. We demonstrate how a Bayesian method to identify cloud phase can improve on currently used methods by including information from multiple measurements and probability estimates.
S. Jeon, Prabhat, S. Byna, J. Gu, W. D. Collins, and M. F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, https://doi.org/10.5194/ascmo-1-45-2015, https://doi.org/10.5194/ascmo-1-45-2015, 2015
Short summary
Short summary
This paper investigates the influence of atmospheric rivers on spatial coherence of extreme precipitation under a changing climate. We use our TECA software developed for detecting atmospheric river events and apply statistical techniques based on extreme value theory to characterize the spatial dependence structure between precipitation extremes within the events. The results show that extreme rainfall caused by atmospheric river events is less spatially correlated under the warming scenario.
Cited articles
Benedict, J. J., Lee, S., and Feldstein, S. B.: Synoptic view of the North Atlantic oscillation, J. Atmos. Sci., 61, 121–144, 2004.
Brock, W. A., Dechert W. D., and Sheinkman J. A.: A test of independence based on the correlation dimension, Econom. Rev., 15, 197–235, 1996.
Brockwell, P. J. and Davis, R. A.: Time series: Theory and methods, second edition, Springer, New York, https://doi.org/10.1007/978-1-4419-0320-4, 1991.
Caian M., Koenigk, T., Döscher, R., and Devasthale, A.: An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation, Clim. Dynam., 50, 423–441, 2018.
Cover, T. M. and Thomas, J. A.: Elements of information theory, 2nd Edn., John Wiley & Sons, Hoboken, New Jersey, https://doi.org/10.1002/047174882X, 2012.
Cropper, T., Hanna, E., Valente, M. A., and Jónsson, T.: A daily Azores-Iceland North Atlantic Oscillation index back to 1850, Geosci. Data J., 2, 12–24, 2015.
Cropper, T. E., Hanna, E., Valente, M. A., and Jónsson, T.: A daily Azores-Iceland North Atlantic Oscillation Index back to 1850, Zenodo, https://doi.org/10.5281/zenodo.9979, 2014.
De Gooijer, J.: Elements of nonlinear time series analysis and forecasting, 1st Edn., Springer International Publishing, https://doi.org/10.1007/978-3-319-43252-6, 2017.
Feldstein, S. B.: The timescale, power spectra, and climate noise properties of teleconnection patterns, J. Climate, 13, 4430–4440, 2000.
Feldstein, S. B.: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern, Q. J. Roy. Meteor. Soc., 128, 775–796, 2002.
Feldstein, S. B.: The dynamics of NAO teleconnection pattern growth and decay, Q. J. Roy. Meteor. Soc., 129, 901–924, 2003.
Feldstein, S. B. and Franzke, C.: Atmospheric teleconnection patterns in: Nonlinear and Stochastic Climate Dynamics, edited by: Franzke, C. L. E. and O'Kane, T. J., Cambridge University Press, Cambridge, UK, 54–104, 2017.
Franzke, C.: Extremes in dynamic-stochastic systems, Chaos, 27, 012101, https://doi.org/10.1063/1.4973541, 2017.
Franzke, C. and Feldstein, S. B.: The continuum and dynamics of Northern Hemisphere teleconnection patterns, J. Atmos. Sci., 62, 3250–3267, 2005.
Franzke, C. and Woollings, T.: On the Persistence and Predictability Properties of North Atlantic Climate Variability, J. Climate, 24, 466–472, 2011.
Franzke, C., Woollings, T., and Martius, O.: Persistent Circulation Regimes and Preferred Regime Transitions in the North Atlantic, J. Atmos. Sci., 68, 2809–2825, 2011.
Franzke, C., Lee, S., and Feldstein, S. B.: Is the North Atlantic Oscillation a breaking wave?, J. Atmos. Sci., 61, 145–160, 2004.
Franzke, C. L. E., O'Kane, T. J., Monselesan, D. P., Risbey, J. S., and Horenko, I.: Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability, Nonlin. Processes Geophys., 22, 513–525, https://doi.org/10.5194/npg-22-513-2015, 2015.
Franzke, C., Osprey, S. M., Davini, P., and Watkins, N. W.: A dynamical systems explanation of the Hurst effect and atmospheric low-frequency variability, Sci. Rep., 5, 9068, 2015b.
Franzke, C., Barbosa, S., Blender, R., Fredriksen, H. B., Laepple, T., Lambert, F., Nilsen, T., Rypdal, K., Rypdal, M., Scotto, M., Vannitsem, S., Watkins, N., Yang, L., and Yuan, N.: The Structure of Climate Variability Across Scales, Rev. Geophys., 58, e2019RG000657, https://doi.org/10.1029/2019RG000657, 2020.
Gámiz-Fortis, S. R., Pozo-Vázquez, D., Esteban-Parra, M. J., and Castro-Díez, Y.: Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis, J. Geophys. Res., 107, ACC 11-1–ACC 55-15, 4685, https://doi.org/10.1029/2001JD001436, 2002.
Hannachi, A. and Stendel, M.: Annex 1: What is NAO?, in: North Sea Region Climate Change Assessment, edited by: Quante, M. and Colijn, F., Springer Inernational Publishing, 528 pp., 55–84, 2016.
Hannachi, A., Straus, D., Franzke, C., Corti, S., and Woollings, T.: Low frequency nonlinearity and regime behavior in the Northern Hemisphere extra-tropical atmosphere, Rev. Geophys. 55, 199–234, 2017.
Horel, J. D. and Wallace, J. M.: Planetary-scale atmospheric phenomena associated with the Southern Oscillation, Mon. Weather Rev., 109, 813–829, 1981.
Horenko, I.: On the identification of nonstationary factor models and their application to atmospheric data analysis, J. Atmos. Sci., 67, 1559–1574, 2010.
Kowalski, A. M., Martín, M. T., Plastino, A., Rosso, O. A., and Casas, M.: Distances in probability space and the statistical complexity setup, Entropy, 13, 1055–1075, 2011.
Kullback, S.: Information theory and statistics, Courier Corporation, Wiley, New York, 1959.
Kullback, S. and Leibler, R. A.: On information and sufficiency, Ann. Math. Stat., 22, 79–86, 1951.
Lacasa, L., Nunez, A., Roldan, E., Parrondo, J. M., and Luque, B.: Time series irreversibility: a visibility graph approach, Euro. Phys. J. B., 85, 217, https://doi.org/10.1140/epjb/e2012-20809-8, 2012.
Majda, A. J., Franzke, C., and Crommelin, D.: Normal forms for reduced stochastic climate models, Proc. Natl. Acad. Sci. USA, 106, 3649–3653, 2009.
Mandelbrot, B. M. and Wallis, J. R.: Noah, Joseph and operational hydrology, Water Res. M., 4, 909–918, 1968.
O'Kane, T. J., Risbey, J. S., Franzke, C., Horenko, I., and Monselesan, D. P.: Changes in the metastability of the midlatitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split-flow blocking indices as diagnostic tools, J. Atmos. Sci., 70, 824–842, 2013.
Önskog, T., Franzke, C., and Hannachi, A.: Predictability and Non-Gaussian Characteristics of the North Atlantic Oscillation, J. Climate, 31, 537–554, 2018.
Risbey, J. S., O'Kane, T. J., Monselesan, D. P., Franzke, C., and Horenko, I.: Metastability of Northern Hemisphere teleconnection modes, J. Atmos. Sci., 72, 35–54, 2015.
Rossby, C.-G.: Planetary flow patterns in the atmosphere, Q. J. Roy. Meteor. Soc., 66, 68–87, 1940.
Sardeshmukh, P. D. and Sura, P.: Reconciling non-Gaussian climate statistics with linear dynamics, J. Climate, 22, 1193–1207, 2009.
Stendel, M., van den Besselaar, E., Hannachi, A., Kent, E. C., Lefevre, C., Schenk, F., van der Schrier, G., and Woollings, T. J.: Recent Change–Atmosphere, in: North Sea Region Climate Change Assessment, edited by: Quante, M. and Colijn, F., Springer International Publishing, 528 pp., 489–493, 2016.
Walker, G. T. and Bliss, E. W.: World weather, V. Memoirs Royal Meteorol., 4, 53–84, 1932.
Wallace, J. M. and Gutzler, D. S.: Teleconnections in the geopotential height field during the Northern Hemisphere winter, Mon. Weather Rev., 109, 784–812, 1981.
Woollings, T., Czuchnicki, C., and Franzke, C.: Twentieth century North Atlantic jet variability, Q. J. Roy. Meteor. Soc., 140, 783–791, 2014.
Woollings, T., Franzke, C., Hodson, D. L. R., Dong, B., Barnes, E. A., Raible, C. C., and Pinto, J. G.: Contrasting interannual and multidecadal NAO variability, Clim. Dynam., 45, 539–556, 2015.
Woollings, T., Hannachi, A., Hoskins, B., and Turner, A.: A Regime View of the North Atlantic Oscillation and Its Response to Anthropogenic Forcing, J. Climate, 23, 1291–1307, 2010.
Wunsch, C.: The Interpretation of Short Climate Records, with Comments on the North Atlantic and Southern Oscillations, B. Am. Meteorol. Soc., 80, 245–255, 1999.
Short summary
The North Atlantic Oscillation (NAO) has a significant impact on seasonal climate and surface weather conditions throughout Europe, North America and the North Atlantic. In this paper, we study a number of linear and nonlinear models for a station-based time series of the daily winter NAO. We find that a class of nonlinear models, including both short and long lags, excellently reproduce the characteristic statistical properties of the NAO. These models can hence be used to simulate the NAO.
The North Atlantic Oscillation (NAO) has a significant impact on seasonal climate and surface...