Articles | Volume 6, issue 2
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, 2020
https://doi.org/10.5194/ascmo-6-141-2020
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, 2020
https://doi.org/10.5194/ascmo-6-141-2020
 
07 Oct 2020
07 Oct 2020

Nonlinear time series models for the North Atlantic Oscillation

Thomas Önskog et al.

Related authors

Review Article: Wind and storm damage: From Meteorology to Impacts
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-159,https://doi.org/10.5194/nhess-2022-159, 2022
Preprint under review for NHESS
Short summary
Drought impact links to meteorological drought indicators and predictability in Spain
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022,https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Spatial trend analysis of gridded temperature data at varying spatial scales
Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 1–12, https://doi.org/10.5194/ascmo-6-1-2020,https://doi.org/10.5194/ascmo-6-1-2020, 2020
Short summary
20th century intraseasonal Asian monsoon dynamics viewed from Isomap
A. Hannachi and A. G. Turner
Nonlin. Processes Geophys., 20, 725–741, https://doi.org/10.5194/npg-20-725-2013,https://doi.org/10.5194/npg-20-725-2013, 2013

Related subject area

Atmospheric science
A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns
Vitaly Kholodovsky and Xin-Zhong Liang
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021,https://doi.org/10.5194/ascmo-7-35-2021, 2021
Short summary
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020,https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020,https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary
Automated detection of weather fronts using a deep learning neural network
James C. Biard and Kenneth E. Kunkel
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019,https://doi.org/10.5194/ascmo-5-147-2019, 2019
Short summary

Cited articles

Benedict, J. J., Lee, S., and Feldstein, S. B.: Synoptic view of the North Atlantic oscillation, J. Atmos. Sci., 61, 121–144, 2004. 
Brock, W. A., Dechert W. D., and Sheinkman J. A.: A test of independence based on the correlation dimension, Econom. Rev., 15, 197–235, 1996. 
Brockwell, P. J. and Davis, R. A.: Time series: Theory and methods, second edition, Springer, New York, https://doi.org/10.1007/978-1-4419-0320-4, 1991. 
Caian M., Koenigk, T., Döscher, R., and Devasthale, A.: An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation, Clim. Dynam., 50, 423–441, 2018. 
Cover, T. M. and Thomas, J. A.: Elements of information theory, 2nd Edn., John Wiley & Sons, Hoboken, New Jersey, https://doi.org/10.1002/047174882X, 2012. 
Download
Short summary
The North Atlantic Oscillation (NAO) has a significant impact on seasonal climate and surface weather conditions throughout Europe, North America and the North Atlantic. In this paper, we study a number of linear and nonlinear models for a station-based time series of the daily winter NAO. We find that a class of nonlinear models, including both short and long lags, excellently reproduce the characteristic statistical properties of the NAO. These models can hence be used to simulate the NAO.