Articles | Volume 10, issue 1
https://doi.org/10.5194/ascmo-10-29-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ascmo-10-29-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Institute of Geosciences, University of Bonn, Bonn, Germany
Petra Friederichs
Institute of Geosciences, University of Bonn, Bonn, Germany
Related authors
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Philipp Ertz and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 229–256, https://doi.org/10.5194/ascmo-11-229-2025, https://doi.org/10.5194/ascmo-11-229-2025, 2025
Short summary
Short summary
We develop a spatial statistical calibration of wind gust observations for the region of Germany with an interpolation to unobserved locations. Furthermore, the model is spatially adaptive and includes the station altitude both as explanatory variable and as offset to increase the distance between stations. This offset allows us to include mountain stations into the training data. Compared to a spatially constant model, the adaptive model improves the representation of extreme wind gusts.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021, https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary
Short summary
When insects fill the lower kilometers of the atmosphere, they get caught in the convergent parts of the wind field. Their concentration visualizes the otherwise invisible circulation on radar images. This study shows how clear-air radar data can be compared to simulated wind fields in terms of scale, anisotropy, and direction. Despite known difficulties with simulating these near-surface wind systems, we find decent agreement between a long-term simulation and the German radar mosaic.
Cited articles
Abdi, H. and Williams, L. J.: Principal component analysis, Wires Comput. Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010. a, b
Anderson, H. R., Atkinson, R. W., Peacock, J., Marston, L., and Konstantinou, K.: Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3): report of a WHO task group, Tech. rep., Copenhagen: WHO Regional Office for Europe, https://iris.who.int/handle/10665/107557, 2004. a
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, 1987. a
Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J. L., De Waal, D. and Ferro, C.: Statistics of extremes: theory and applications, John Wiley & Sons, 2006. a
Beniston, M.: The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations, Geophys. Res. Lett., 31, L02202, https://doi.org/10.1029/2003GL018857, 2004. a
Black, E., Blackburn, M., Harrison, G., Hoskins, B., and Methven, J.: Factors contributing to the summer 2003 European heatwave, Weather, 59, 217–223, 2004. a
Bollmeyer, C., Keller, J., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteor. Soc., 141, 1–15, 2015. a
Boulaguiem, Y., Zscheischler, J., Vignotto, E., van der Wiel, K., and Engelke, S.: Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks, Environmental Data Science, 1, 4, https://doi.org/10.1017/eds.2022.4, 2022. a
Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., and Xiao, X.: Flash drought development and cascading impacts associated with the 2010 Russian heatwave, Environ. Res. Lett., 15, 094078, https://doi.org/10.1088/1748-9326/ab9faf, 2020. a, b
Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to statistical modeling of extreme values, vol. 208, Springer, https://doi.org/10.1007/978-1-4471-3675-0, 2001. a
Cook, B. I., Mankin, J. S., and Anchukaitis, K. J.: Climate change and drought: From past to future, Current Climate Change Reports, 4, 164–179, 2018. a
Dai, A., Zhao, T., and Chen, J.: Climate change and drought: a precipitation and evaporation perspective, Current Climate Change Reports, 4, 301–312, 2018. a
Della-Marta, P. M., Haylock, M. R., Luterbacher, J., and Wanner, H.: Doubled length of western European summer heat waves since 1880, J. Geophys. Res.-Atmos., 112, D15103, https://doi.org/10.1029/2007JD008510, 2007. a
Drees, H. and Sabourin, A.: Principal component analysis for multivariate extremes, arXiv [preprint], https://doi.org/10.48550/arXiv.1906.11043, 26 June 2019. a
DWD/HErZ – Deutscher Wetterdienst – Climate Data Center/Hans Ertel Centre for Weather Research: COSMO-REA6 regional reanalysis, https://opendata.dwd.de/climate_environment/REA/COSMO_REA6/, last access: 20 December 2023. a
Ferranti, L. and Viterbo, P.: The European summer of 2003: Sensitivity to soil water initial conditions, J. Climate, 19, 3659–3680, 2006. a
Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts, Weather, 59, 209–216, 2004. a
Fischer, E. M. and Knutti, R.: Observed heavy precipitation increase confirms theory and early models, Nat. Clim. Change, 6, 986–991, 2016. a
Fischer, E. M. and Schär, C.: Consistent geographical patterns of changes in high-impact European heatwaves, Nat. Geosci., 3, 398–403, 2010. a
Fix, M. J., Cooley, D. S., and Thibaud, E.: Simultaneous autoregressive models for spatial extremes, Environmetrics, 32, e2656, https://doi.org/10.1002/env.2656, 2021. a
García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J., and Fischer, E. M.: A review of the European summer heat wave of 2003, Crit. Rev. Env. Sci. Tec., 40, 267–306, 2010. a
Gershunov, A. and Douville, H.: Extensive summer hot and cold spells under current and possible future climatic conditions: Europe and North America, Climate Extremes and Society, 74–98, https://doi.org/10.1017/Cbo9780511535840.008, 2009. a, b, c
Goix, N., Sabourin, A., and Clémençon, S.: Sparse representation of multivariate extremes with applications to anomaly detection, J. Multivariate Anal., 161, 12–31, https://doi.org/10.1016/j.jmva.2017.06.010, 2017. a
Griggs, D. J. and Noguer, M.: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Weather, 57, 267–269, 2002. a
Grumm, R. H.: The central European and Russian heat event of July–August 2010, B. Am. Meteor. Soc., 92, 1285–1296, 2011. a
Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E., and Ford, A.: Future heat-waves, droughts and floods in 571 European cities, Environ. Res. Lett., 13, 034009, https://doi.org/10.1088/1748-9326/aaaad3, 2018. a
Higham, N. J.: Computing the nearest correlation matrix – a problem from finance, IMA J. Numer. Anal., 22, 329–343, 2002. a
Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T. J., and Dutcher, A. L.: The development and evaluation of a soil moisture index, Int. J. Climatol., 29, 747–759, 2009. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021. a
Janßen, A. and Wan, P.: k-means clustering of extremes, Electron. J. Stat., 14, 1211–1233, 2020. a
Jolliffe, I. T.: Principal components in regression analysis, in: Principal component analysis, 129–155, Springer, https://doi.org/10.1007/978-1-4757-1904-8_8, 1986. a, b
Keyantash, J. and Dracup, J. A.: The quantification of drought: an evaluation of drought indices, B. Am. Meteor. Soc., 83, 1167–1180, 2002. a
Kueh, M.-T. and Lin, C.-Y.: The 2018 summer heatwaves over northwestern Europe and its extended-range prediction, Sci. Rep.-UK, 10, 1–18, 2020. a
Lavaysse, C., Cammalleri, C., Dosio, A., van der Schrier, G., Toreti, A., and Vogt, J.: Towards a monitoring system of temperature extremes in Europe, Nat. Hazards Earth Syst. Sci., 18, 91–104, https://doi.org/10.5194/nhess-18-91-2018, 2018. a
Liu, X., He, B., Guo, L., Huang, L., and Chen, D.: Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018, Earth's Future, 8, e2019EF001386, https://doi.org/10.1029/2019EF001386, 2020. a, b, c, d
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303, 1499–1503, 2004. a
Mo, K. C. and Lettenmaier, D. P.: Precipitation deficit flash droughts over the United States, J. Hydrometeorol., 17, 1169–1184, 2016. a
Morris, S. A., Reich, B. J., and Thibaud, E.: Exploration and inference in spatial extremes using empirical basis functions, J. Agr. Biol. Envir. St., 24, 555–572, 2019. a
Newman, M. and Sardeshmukh, P. D.: A caveat concerning singular value decomposition, J. Climate, 8, 352–360, 1995. a
Palmer, W. C.: Meteorological drought, vol. 30, US Department of Commerce, Weather Bureau, https://books.google.de/books?id=kyYZgnEk-L8C (last access: 23 December 2023), 1965. a
Peters, A. J., Walter-Shea, E. A., Ji, L., Vina, A., Hayes, M., and Svoboda, M. D.: Drought monitoring with NDVI-based standardized vegetation index, Photogramm. Eng. Rem. S., 68, 71–75, 2002. a
Redmond, K.: Climate monitoring and indices, Drought management and planning: international drought information center, Department of Agricultural Meteorology, Am. Metorol. Soc., 9, 29–33, 1991. a
Robinson, P. J.: On the definition of a heat wave, J. Appl. Meteorol. Climatol., 40, 762–775, 2001. a
Rousi, E., Fink, A. H., Andersen, L. S., Becker, F. N., Beobide-Arsuaga, G., Breil, M., Cozzi, G., Heinke, J., Jach, L., Niermann, D., Petrovic, D., Richling, A., Riebold, J., Steidl, S., Suarez-Gutierrez, L., Tradowsky, J. S., Coumou, D., Düsterhus, A., Ellsäßer, F., Fragkoulidis, G., Gliksman, D., Handorf, D., Haustein, K., Kornhuber, K., Kunstmann, H., Pinto, J. G., Warrach-Sagi, K., and Xoplaki, E.: The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective, Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, 2023. a
Saunders, K., Stephenson, A., and Karoly, D.: A regionalisation approach for rainfall based on extremal dependence, Extremes, 24, 215–240, 2021. a
Schädler, G. and Breil, M.: Identification of droughts and heatwaves in Germany with regional climate networks, Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021, 2021. a
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts on the natural physical environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109–230, 2012. a
Slater, L. J., Anderson, B., Buechel, M., Dadson, S., Han, S., Harrigan, S., Kelder, T., Kowal, K., Lees, T., Matthews, T., Murphy, C., and Wilby, R. L.: Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management, Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, 2021. a
Szemkus, S., Cooley, D., and Jiang, Y.: ExtrPatt: Spatial Dependencies and Indices for Extremes, https://CRAN.R-project.org/package=ExtrPatt (last access: 20 December 2023), 2023. a
Sousa, P. M., Barriopedro, D., García-Herrera, R., Ordóñez, C., Soares, P. M., and Trigo, R. M.: Distinct influences of large-scale circulation and regional feedbacks in two exceptional 2019 European heatwaves, Commun. Earth & Environ., 1, 1–13, 2020. a
Stefanon, M., D’Andrea, F., and Drobinski, P.: Heatwave classification over Europe and the Mediterranean region, Environ. Res. Lett., 7, 014023, https://doi.org/10.1088/1748-9326/7/1/014023, 2012. a, b
Ummenhofer, C. C. and Meehl, G. A.: Extreme weather and climate events with ecological relevance: a review, Philos. T. Roy. Soc. B, 372, 20160135, https://doi.org/10.1098/rstb.2016.0135, 2017. a
Vignotto, E., Engelke, S., and Zscheischler, J.: Clustering bivariate dependencies of compound precipitation and wind extremes over Great Britain and Ireland, Weather and Climate Extremes, 32, 100318, https://doi.org/10.1016/j.wace.2021.100318, 2021. a
Wu, X., Hao, Z., Hao, F., Singh, V. P., and Zhang, X.: Dry-hot magnitude index: A joint indicator for compound event analysis, Environ. Res. Lett., 14, 064017, https://doi.org/10.1088/1748-9326/ab1ec7, 2019. a, b
Zaitchik, B. F., Macalady, A. K., Bonneau, L. R., and Smith, R. B.: Europe's 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks, Int. J. Climatol., 26, 743–769, 2006. a
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks associated with compound events, Sci. Adv., 3, e1700263, https://doi.org/10.1126/sciadv.1700263, 2017. a
Short summary
This paper uses the tail pairwise dependence matrix (TPDM) proposed by Cooley and Thibaud (2019), which we extend to the description of common extremes in two variables. We develop an extreme pattern index (EPI), a pattern-based aggregation to describe spatially extended weather extremes. Our results show that the EPI is suitable for describing heat waves. We extend the EPI to describe extremes in two variables and obtain an index to describe compound precipitation deficits and heat waves.
This paper uses the tail pairwise dependence matrix (TPDM) proposed by Cooley and Thibaud...