Articles | Volume 4, issue 1/2
https://doi.org/10.5194/ascmo-4-1-2018
https://doi.org/10.5194/ascmo-4-1-2018
22 Aug 2018
 | 22 Aug 2018

The joint influence of break and noise variance on the break detection capability in time series homogenization

Ralf Lindau and Victor Karel Christiaan Venema

Related authors

The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite
M. Schröder, M. Jonas, R. Lindau, J. Schulz, and K. Fennig
Atmos. Meas. Tech., 6, 765–775, https://doi.org/10.5194/amt-6-765-2013,https://doi.org/10.5194/amt-6-765-2013, 2013

Related subject area

Climate research
Identifying time patterns of highland and lowland air temperature trends in Italy and the UK across monthly and annual scales
Chalachew Muluken Liyew, Elvira Di Nardo, Rosa Meo, and Stefano Ferraris
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 173–194, https://doi.org/10.5194/ascmo-10-173-2024,https://doi.org/10.5194/ascmo-10-173-2024, 2024
Short summary
Formally combining different lines of evidence in extreme-event attribution
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024,https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Environmental sensitivity of the Caribbean economic growth rate
Mark R. Jury
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 95–104, https://doi.org/10.5194/ascmo-10-95-2024,https://doi.org/10.5194/ascmo-10-95-2024, 2024
Short summary
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024,https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Changes in the distribution of annual maximum temperatures in Europe
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023,https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary

Cited articles

Alexandersson, H. and Moberg, A.: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends, Int. J. Climatol., 17, 25–34, 1997. 
Bellman, R.: The theory of dynamic programming, B. Am. Math. Soc., 60, 503–516, https://doi.org/10.1090/S0002-9904-1954-09848-8, 1954. 
Brunetti, M., Maugeri, M., Monti, F., and Nanni, T.: Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series, Int. J. Climatol., 26, 345–381, 2006. 
Caussinus, H. and Lyazrhi, F.: Choosing a linear model with a random number of change-points and outliers, Ann. I. Stat. Math., 49, 761–775, 1997. 
Download
Short summary
Climate data contain spurious breaks, e.g., by relocation of stations, which makes it difficult to infer the secular temperature trend. Homogenization algorithms use the difference time series of neighboring stations to detect and eliminate this spurious break signal. For low signal-to-noise ratios, i.e., large distances between stations, the correct break positions may not only remain undetected, but segmentations explaining mainly the noise can be erroneously assessed as significant and true.
Share