Articles | Volume 1, issue 1
https://doi.org/10.5194/ascmo-1-15-2015
https://doi.org/10.5194/ascmo-1-15-2015
25 Mar 2015
 | 25 Mar 2015

Joint inference of misaligned irregular time series with application to Greenland ice core data

T. K. Doan, J. Haslett, and A. C. Parnell

Related authors

A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change
Niamh Cahill, Andrew C. Kemp, Benjamin P. Horton, and Andrew C. Parnell
Clim. Past, 12, 525–542, https://doi.org/10.5194/cp-12-525-2016,https://doi.org/10.5194/cp-12-525-2016, 2016
Short summary

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Chiles, J.-P. and Delfiner, P.: Geostatistics: modeling spatial uncertainty, Vol. 497, John Wiley & Sons, 2012.
Cismondi, F., Fialho, A., Vieira, S., Sousa, J., Reti, S., Howell, M., and Finkelstein, S.: Computational intelligence methods for processing misaligned, unevenly sampled time series containing missing data, in: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 224–231, https://doi.org/10.1109/CIDM.2011.5949447, 2011.
Cismondi, F., Fialho, A. S., Vieira, S. M., Reti, S. R., Sousa, J., and Finkelstein, S. N.: Missing data in medical databases: Impute, delete or classify?, Artif. Intell. Med., 58, 63–72, 2013.
Cressie, N. and Wikle, C. K.: Statistics for spatio-temporal data, John Wiley & Sons, 2011.
Eckner, A.: A framework for the analysis of unevenly spaced time series data, Preprint, available at: http://eckner.com/papers/unevenly_spaced_time_series_analysis.pdf (last access: 20 March 2015), 2012.