Articles | Volume 1, issue 1
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 15–27, 2015
https://doi.org/10.5194/ascmo-1-15-2015
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 15–27, 2015
https://doi.org/10.5194/ascmo-1-15-2015

  25 Mar 2015

25 Mar 2015

Joint inference of misaligned irregular time series with application to Greenland ice core data

T. K. Doan et al.

Related authors

A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change
Niamh Cahill, Andrew C. Kemp, Benjamin P. Horton, and Andrew C. Parnell
Clim. Past, 12, 525–542, https://doi.org/10.5194/cp-12-525-2016,https://doi.org/10.5194/cp-12-525-2016, 2016
Short summary

Related subject area

Statistics
Novel measures for summarizing high-resolution forecast performance
Eric Gilleland
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 13–34, https://doi.org/10.5194/ascmo-7-13-2021,https://doi.org/10.5194/ascmo-7-13-2021, 2021
Short summary
Copula approach for simulated damages caused by landfalling US hurricanes
Thomas Patrick Leahy
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 1–11, https://doi.org/10.5194/ascmo-7-1-2021,https://doi.org/10.5194/ascmo-7-1-2021, 2021
Short summary
Nonstationary extreme value analysis for event attribution combining climate models and observations
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020,https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Comparing climate time series – Part 1: Univariate test
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 159–175, https://doi.org/10.5194/ascmo-6-159-2020,https://doi.org/10.5194/ascmo-6-159-2020, 2020
Short summary
A statistical approach to fast nowcasting of lightning potential fields
Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 79–90, https://doi.org/10.5194/ascmo-6-79-2020,https://doi.org/10.5194/ascmo-6-79-2020, 2020
Short summary

Cited articles

Chiles, J.-P. and Delfiner, P.: Geostatistics: modeling spatial uncertainty, Vol. 497, John Wiley & Sons, 2012.
Cismondi, F., Fialho, A., Vieira, S., Sousa, J., Reti, S., Howell, M., and Finkelstein, S.: Computational intelligence methods for processing misaligned, unevenly sampled time series containing missing data, in: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 224–231, https://doi.org/10.1109/CIDM.2011.5949447, 2011.
Cismondi, F., Fialho, A. S., Vieira, S. M., Reti, S. R., Sousa, J., and Finkelstein, S. N.: Missing data in medical databases: Impute, delete or classify?, Artif. Intell. Med., 58, 63–72, 2013.
Cressie, N. and Wikle, C. K.: Statistics for spatio-temporal data, John Wiley & Sons, 2011.
Eckner, A.: A framework for the analysis of unevenly spaced time series data, Preprint, available at: http://eckner.com/papers/unevenly_spaced_time_series_analysis.pdf (last access: 20 March 2015), 2012.