Articles | Volume 3, issue 1
https://doi.org/10.5194/ascmo-3-1-2017
https://doi.org/10.5194/ascmo-3-1-2017
27 Jan 2017
 | 27 Jan 2017

Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression

John Tipton, Mevin Hooten, and Simon Goring

Related authors

Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
Odile Peyron, Nathalie Combourieu-Nebout, David Brayshaw, Simon Goring, Valérie Andrieu-Ponel, Stéphanie Desprat, Will Fletcher, Belinda Gambin, Chryssanthi Ioakim, Sébastien Joannin, Ulrich Kotthoff, Katerina Kouli, Vincent Montade, Jörg Pross, Laura Sadori, and Michel Magny
Clim. Past, 13, 249–265, https://doi.org/10.5194/cp-13-249-2017,https://doi.org/10.5194/cp-13-249-2017, 2017
Short summary
Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea)
N. Combourieu-Nebout, O. Peyron, V. Bout-Roumazeilles, S. Goring, I. Dormoy, S. Joannin, L. Sadori, G. Siani, and M. Magny
Clim. Past, 9, 2023–2042, https://doi.org/10.5194/cp-9-2023-2013,https://doi.org/10.5194/cp-9-2023-2013, 2013

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Andsager, K., Ross, T., Kruk, M.C., and Spinar, M. L.: Climate database modernization program: pre-20th century task – key climate observations recorded since the founding of America, 1700s–1800s, in: Combined preprints: 84th AMS annual meeting : 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle Washington, Boston, MA, American Meteorological Society, 2004.
Barboza, L., Li, B., Tingley, M., and Viens, F.: Reconstructing past temperatures from natural proxies and estimated climate forcings using short-and long-memory models, Ann. Appl. Stat., 8, 1966–2001, 2014.
Bell, W. and Ogilvie, A.: Weather compilations as a source of data for the reconstruction of European climate during the medieval period, Climatic Change, 1, 331–348, 1978.
Bernardo, J. M. and Smith, A.: Bayesian Theory, vol. 405, John Wiley & Sons, 2009.
Brázdil, R., Kundzewicz, Z., and Benito, G.: Historical hydrology for studying flood risk in Europe, Hydrolog. Sci. J., 51, 739–764, 2006.
Download
Short summary
We present a statistical framework for the reconstruction of historic temperature patterns from sparse, irregular data collected from observer stations. A common statistical technique for climate reconstruction uses modern era data as a set of temperature patterns that can be used to estimate the spatial temperature patterns. We present a framework for exploration of different assumptions about the sets of patterns used in the reconstruction while providing statistically rigorous estimates.