Articles | Volume 5, issue 2
https://doi.org/10.5194/ascmo-5-161-2019
https://doi.org/10.5194/ascmo-5-161-2019
26 Nov 2019
 | 26 Nov 2019

An improved projection of climate observations for detection and attribution

Alexis Hannart

Related authors

Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation
M. Bocquet, P. N. Raanes, and A. Hannart
Nonlin. Processes Geophys., 22, 645–662, https://doi.org/10.5194/npg-22-645-2015,https://doi.org/10.5194/npg-22-645-2015, 2015
Short summary

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Allen, M. and Stott, P.: Estimating signal amplitudes in optimal fingerprinting, part i: theory, Clim. Dynam., 21, 477–491, 2003. a
Allen, M. and Tett, S.: Checking for model consistency in optimal fingerprinting, Clim. Dynam., 15, 419–434, 1999. a
Amemiya, T.: Advanced Econometrics, Harvard University Press, 1985. a
Bell, T. P.: Theory of optimal weighting of data to detect climate change, J. Atmos. Sci., 43, 1694–1710, 1986. a
Brohan, P., Kennedy, J., Harris, I., Tett, S., and Jones, P.: Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850, J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006. a, b
Download
Short summary
In climate change attribution studies, one often seeks to maximize a signal-to-noise ratio, where the signal is the anthropogenic response and the noise is climate variability. A solution commonly used in D&A studies thus far consists of projecting the signal on the subspace spanned by the leading eigenvectors of climate variability. Here I show that this approach is vastly suboptimal – in fact, it leads instead to maximizing the noise-to-signal ratio. I then describe an improved solution.