Articles | Volume 6, issue 1
https://doi.org/10.5194/ascmo-6-1-2020
https://doi.org/10.5194/ascmo-6-1-2020
28 Feb 2020
 | 28 Feb 2020

Spatial trend analysis of gridded temperature data at varying spatial scales

Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke

Related authors

Calibrating regionally downscaled precipitation over Norway through quantile-based approaches
David Bolin, Arnoldo Frigessi, Peter Guttorp, Ola Haug, Elisabeth Orskaug, Ida Scheel, and Jonas Wallin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 39–47, https://doi.org/10.5194/ascmo-2-39-2016,https://doi.org/10.5194/ascmo-2-39-2016, 2016

Related subject area

Statistics
A non-stationary climate-informed weather generator for assessing future flood risks
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024,https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary
Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary
Parametric model for post-processing visibility ensemble forecasts
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024,https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary

Cited articles

Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Stat. Soc. Ser. B, 57, 289–300, 1995. a
Blangiardo, M. and Cameletti, M.: Spatial and spatio-temporal Bayesian models with R-INLA, John Wiley & Sons Ltd, Chichester, United Kingdom, 2015. a
Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., and Schöner, W.: Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series, Int. J. Climatol., 21, 1779–1801, 2001. a, b
Bolin, D. and Lindgren, F.: Excursion and contour uncertainty regions for latent Gaussian models, J. Roy. Stat. Soc. Ser. B, 77, 85–106, 2015. a, b, c, d
Bolin, D. and Lindgren, F.: Calculating probabilistic excursion sets and related quantities using excursions, J. Stat. Softw., 86, 1–20, 2018. a
Download
Short summary
Trends in gridded temperature data are commonly assessed independently for each grid cell, ignoring spatial coherencies. This may severely affect the interpretation of the results. This article proposes a space–time model for temperatures that allows for joint assessments of the trend across locations. In a case study of summer season trends in Europe, it is found that the region with a significant trend under spatial coherency is vastly different from that under independent assessments.