Articles | Volume 6, issue 1
https://doi.org/10.5194/ascmo-6-1-2020
https://doi.org/10.5194/ascmo-6-1-2020
28 Feb 2020
 | 28 Feb 2020

Spatial trend analysis of gridded temperature data at varying spatial scales

Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke

Related authors

Calibrating regionally downscaled precipitation over Norway through quantile-based approaches
David Bolin, Arnoldo Frigessi, Peter Guttorp, Ola Haug, Elisabeth Orskaug, Ida Scheel, and Jonas Wallin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 39–47, https://doi.org/10.5194/ascmo-2-39-2016,https://doi.org/10.5194/ascmo-2-39-2016, 2016

Related subject area

Statistics
On inference of boxplot symbolic data: applications in climatology
Abdolnasser Sadeghkhani and Ali Sadeghkhani
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 73–87, https://doi.org/10.5194/ascmo-11-73-2025,https://doi.org/10.5194/ascmo-11-73-2025, 2025
Short summary
Proper scoring rules for multivariate probabilistic forecasts based on aggregation and transformation
Romain Pic, Clément Dombry, Philippe Naveau, and Maxime Taillardat
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 23–58, https://doi.org/10.5194/ascmo-11-23-2025,https://doi.org/10.5194/ascmo-11-23-2025, 2025
Short summary
Reducing reliability bias in assessments of extreme weather risk using calibrating priors
Stephen Jewson, Trevor Sweeting, and Lynne Jewson
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 1–22, https://doi.org/10.5194/ascmo-11-1-2025,https://doi.org/10.5194/ascmo-11-1-2025, 2025
Short summary
A non-stationary climate-informed weather generator for assessing future flood risks
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024,https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary

Cited articles

Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Stat. Soc. Ser. B, 57, 289–300, 1995. a
Blangiardo, M. and Cameletti, M.: Spatial and spatio-temporal Bayesian models with R-INLA, John Wiley & Sons Ltd, Chichester, United Kingdom, 2015. a
Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., and Schöner, W.: Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series, Int. J. Climatol., 21, 1779–1801, 2001. a, b
Bolin, D. and Lindgren, F.: Excursion and contour uncertainty regions for latent Gaussian models, J. Roy. Stat. Soc. Ser. B, 77, 85–106, 2015. a, b, c, d
Bolin, D. and Lindgren, F.: Calculating probabilistic excursion sets and related quantities using excursions, J. Stat. Softw., 86, 1–20, 2018. a
Download
Short summary
Trends in gridded temperature data are commonly assessed independently for each grid cell, ignoring spatial coherencies. This may severely affect the interpretation of the results. This article proposes a space–time model for temperatures that allows for joint assessments of the trend across locations. In a case study of summer season trends in Europe, it is found that the region with a significant trend under spatial coherency is vastly different from that under independent assessments.
Share