Articles | Volume 6, issue 2
https://doi.org/10.5194/ascmo-6-177-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-6-177-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A protocol for probabilistic extreme event attribution analyses
Sjoukje Philip
CORRESPONDING AUTHOR
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Sarah Kew
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Geert Jan van Oldenborgh
CORRESPONDING AUTHOR
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Friederike Otto
Environmental Change Institute, University of Oxford, Oxford, UK
Robert Vautard
LSCE/IPSL, laboratoire CEA/CNRS/UVSQ, 91191 Gif-sur-Yvette CEDEX, France
Karin van der Wiel
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Andrew King
ARC Centre of Excellence for Climate Extremes, School of Earth Sciences, University of Melbourne, Melbourne 3010, Australia
Fraser Lott
Met Office Hadley Centre, Exeter, UK
Julie Arrighi
Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
Roop Singh
Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
Maarten van Aalst
Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
Related authors
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Anna Zehrung, Andrew D. King, Zebedee Nicholls, Mark D. Zelinka, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2252, https://doi.org/10.5194/egusphere-2025-2252, 2025
Short summary
Short summary
The Gregory method is a common approach for calculating the equilibrium climate sensitivity (ECS). However, studies which apply this method lack transparency in how model data is processed prior to calculating the ECS, inhibiting replicability. Different choices of global and annual mean weighting, anomaly calculation, and linear regression fit can affect the ECS estimates. We investigate the impact of these choices and propose a standardised method for future ECS calculations.
René M. van Westen, Karin van der Wiel, Swinda K. J. Falkena, and Frank Selten
EGUsphere, https://doi.org/10.5194/egusphere-2025-1440, https://doi.org/10.5194/egusphere-2025-1440, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) moderates the European climate. The AMOC is a tipping element and may collapse to a substantially weaker state under climate change. Such an event induces global and regional climate shifts. The European hydroclimate becomes drier under an AMOC collapse, this response is not considered in the 'standard' hydroclimate projections. Our results indicate a considerable influence of the AMOC on the European hydroclimate.
Andrew D. King, Nerilie J. Abram, Eduardo Alastrué de Asenjo, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2025-903, https://doi.org/10.5194/egusphere-2025-903, 2025
Short summary
Short summary
It is vital that climate changes under net zero emissions are well understood to support decision making processes. Current modelling efforts are insufficient, partly due to limited simulation lengths. We propose a framework for 1000-year-long simulations that attempts to minimise computing resources by leveraging existing simulations. This will ultimately increase understanding of the implications of current climate policies for the Earth System over coming decades and centuries.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Andrew D. King, Tilo Ziehn, Matthew Chamberlain, Alexander R. Borowiak, Josephine R. Brown, Liam Cassidy, Andrea J. Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah E. Perkins-Kirkpatrick, and Aditya Sengupta
Earth Syst. Dynam., 15, 1353–1383, https://doi.org/10.5194/esd-15-1353-2024, https://doi.org/10.5194/esd-15-1353-2024, 2024
Short summary
Short summary
Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction.
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024, https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Short summary
To assess the role of climate change in individual weather events, different lines of evidence need to be combined in order to draw robust conclusions about whether observed changes can be attributed to anthropogenic climate change. Here we present a transparent method, developed over 8 years, to combine such lines of evidence in a single framework and draw conclusions about the overarching role of human-induced climate change in individual weather events.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Vikki Thompson, Sjoukje Y. Philip, Izidine Pinto, and Sarah F. Kew
EGUsphere, https://doi.org/10.5194/egusphere-2024-1136, https://doi.org/10.5194/egusphere-2024-1136, 2024
Preprint archived
Short summary
Short summary
In October 2023 Storm Babet brought flooding and strong winds to the UK. We show that similar events are more likely when the North Atlantic sea surface temperatures are higher. The North Atlantic exhibits multidecadal variability impacting the sea surface temperatures. This suggests that trends in storms similar to Babet are driven by multidecadal variability more than climate change. Increasing our knowledge of the causes of extreme weather can allow us to prepare and adapt for future changes.
Rosa Pietroiusti, Inne Vanderkelen, Friederike E. L. Otto, Clair Barnes, Lucy Temple, Mary Akurut, Philippe Bally, Nicole P. M. van Lipzig, and Wim Thiery
Earth Syst. Dynam., 15, 225–264, https://doi.org/10.5194/esd-15-225-2024, https://doi.org/10.5194/esd-15-225-2024, 2024
Short summary
Short summary
Heavy rainfall in eastern Africa between late 2019 and mid 2020 caused devastating floods and landslides and drove the levels of Lake Victoria to a record-breaking maximum in May 2020. In this study, we characterize the spatial extent and impacts of the floods in the Lake Victoria basin and investigate how human-induced climate change influenced the probability and intensity of the record-breaking lake levels and flooding by applying a multi-model extreme event attribution methodology.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022, https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Cited articles
Allen, M. R.: Liability for climate change, Nature, 421, 891–892,
https://doi.org/10.1038/421891a, 2003. a
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and
the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002. a
Annan, J. D. and Hargreaves, J. C.: Reliability of the CMIP3 ensemble,
Geophys. Res. Lett., 37, L02703, https://doi.org/10.1029/2009GL041994, 2010. a
Bellprat, O. and Doblas-Reyes, F.: Attribution of extreme weather and climate
events overestimated by unreliable climate simulations, Geophys. Res.
Lett., 43, 2158–2164, https://doi.org/10.1002/2015GL067189,
2016. a
Bellprat, O., Guemas, V., Doblas-Reyes, F., and Donat, M. G.: Towards reliable
extreme weather and climate event attribution, Nat. Commun., 10,
1732, https://doi.org/10.1038/s41467-019-09729-2, 2019. a, b, c
Bindoff, N. L., Stott, P. A., AchutaRao, K., Allen, M. R., Gillett, N. P., Gutzler, D., Hansingo, K., Hegerl, G. C., Hu, Y., Jain, S., Mokhov, I. I., Overland, J., Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and Attribution of Climate
Change: from Global to Regional, in: Climate Change 2013: The Physical
Science Basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., chap. 10, pp. 867–952,
Cambridge University Press, Cambridge, UK and New York, USA, 2013. a, b, c
Brandsma, T.: Homogenization of daily temperature data of the five principal
stations in the Netherlands (version 1.0), Technical report 356, KNMI, De
Bilt, the Netherlands,
available at: http://bibliotheek.knmi.nl/knmipubTR/TR356.pdf (last access: 31 October 2018), 2016. a
Buishand, T. A.: Extreme rainfall estimation by combining data from several
sites, Hydrol. Sci. J., 36, 345–365,
https://doi.org/10.1080/02626669109492519, 1991. a
Cattiaux, J. and Ribes, A.: Defining Single Extreme Weather Events in a Climate
Perspective, B. Am. Meteorol. Soc., 99, 1557–1568,
https://doi.org/10.1175/BAMS-D-17-0281.1, 2018. a
Cheng, L., Hoerling, M., Smith, L., and Eischeid, J.: Diagnosing Human-Induced
Dynamic and Thermodynamic Drivers of Extreme Rainfall, J. Climate, 31,
1029–1051, https://doi.org/10.1175/JCLI-D-16-0919.1, 2018. a
Ciavarella, A., Christidis, N., Andrews, M., Groenendijk, M., Rostron, J.,
Elkington, M., Burke, C., Lott, F. C., and Stott, P. A.: Upgrade of the
HadGEM3-A based attribution system to high resolution and a new validation
framework for probabilistic event attribution, Weather and Climate Extremes,
20, 9–32, https://doi.org/10.1016/j.wace.2018.03.003, 2018. a
Cipullo, M. L.: High Resolution Modeling Studies of the Changing Risks or
Damage from Extratropical Cyclones, PhD thesis, North Carolina State
University, Raleigh, 2013. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis
Project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776,
2011. a
Copsey, D., Sutton, R., and Knight, J. R.: Recent trends in sea level pressure
in the Indian Ocean region, Geophys. Res. Lett., 33, L19712,
https://doi.org/10.1029/2006GL027175, 2006. a
Cowan, T., Hegerl, G. C., Schurer, A., Tett, S. F. B., Vautard, R., Yiou, P.,
Jézéquel, A., Otto, F. E. L., Harrington, L. J., and Ng, B.: Ocean
and land forcing of the record-breaking Dust Bowl heatwaves across central
United States, Nat. Commun., 11, 2870,
https://doi.org/10.1038/s41467-020-16676-w, 2020. a
de' Donato, F. K., Leone, M., Scortichini, M., De Sario, M., Katsouyanni, K.,
Lanki, T., Basagaña, X., Ballester, F., Åström, C., Paldy, A.,
Pascal, M., Gasparrini, A., Menne, B., and Michelozzi, P.: Changes in the
Effect of Heat on Mortality in the Last 20 Years in Nine European Cities.
Results from the PHASE Project, Int. J. Env.
Res. Pub. He., 12, 15567–15583,
https://doi.org/10.3390/ijerph121215006, 2015. a
D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B.,
Katsouyanni, K., Kirchmayer, U., Analitis, A., Medina-Ramón, M., Paldy,
A., Atkinson, R., Kovats, S., Bisanti, L., Schneider, A., Lefranc, A.,
Iñiguez, C., and Perucci, C. A.: The impact of heat waves on mortality
in 9 European cities: results from the EuroHEAT project, Environ.
Health, 9, 37, https://doi.org/10.1186/1476-069X-9-37, 2010. a
Easterling, D. R., Kunkel, K. E., F., W. M., and Sun, L.: Detection and
attribution of climate extremes in the observed record, Weather and Climate
Extremes, 11, 17–27, https://doi.org/10.1016/j.wace.2016.01.001, 2016. a
Eden, J. M., Wolter, K., Otto, F. E. L., and van Oldenborgh, G. J.:
Multi-method attribution analysis of extreme precipitation in Boulder,
Colorado, Environ. Res. Lett., 11, 124009,
https://doi.org/10.1088/1748-9326/11/12/124009, 2016. a, b, c, d
Eden, J. M., Kew, S. F., Bellprat, O., Lenderink, G., Manola, I., Omrani, H.,
and van Oldenborgh, G. J.: Extreme precipitation in the Netherlands: An
event attribution case study, Weather and Climate Extremes, 21, 90–101,
https://doi.org/10.1016/j.wace.2018.07.003, 2018. a, b, c
Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L.,
Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M.,
and Midgley, P. M. (Eds.): Managing the Risks of Extreme Events and Disasters
to Advance Climate Change Adaptation, Cambridge University Press, Cambridge,
UK, and New York, NY, USA, 2012. a, b, c
Fischer, E. M., Beyerle, U., and Knutti, R.: Robust spatially aggregated
projections of climate extremes, Nat. Clim. Change, 3, 1033–1038,
https://doi.org/10.1038/nclimate2051, 2013. a
Fischer, E. M., Beyerle, U., Schleussner, C. F., King, A. D., and Knutti, R.:
Biased Estimates of Changes in Climate Extremes From Prescribed SST
Simulations, Geophys. Res. Lett., 45, 8500–8509,
https://doi.org/10.1029/2018GL079176, 2018. a
Fouillet, A., Rey, G., Wagner, V., Laaidi, K., Empereur-Bissonnet, P.,
Le Tertre, A., Frayssinet, P., Bessemoulin, P., Laurent, F., De Crouy-Chanel,
P., Jougla, E., and Hémon, D.: Has the impact of heat waves on mortality
changed in France since the European heat wave of summer 2003? A study of
the 2006 heat wave, Int. J. Epidemiology, 37, 309–317,
https://doi.org/10.1093/ije/dym253, 2008. a
Frame, D. J., Wehner, M. F., Noy, I., and Rosier, S. M.: The economic costs of
Hurricane Harvey attributable to climate change, Clim. Change, 160, 271–281,
https://doi.org/10.1007/s10584-020-02692-8, 2020. a
Gudmundsson, L. and Seneviratne, S. I.: Anthropogenic climate change affects
meteorological drought risk in Europe, Environ. Res. Lett., 11, 044005,
https://doi.org/10.1088/1748-9326/11/4/044005, 2016. a
Hagedorn, R., Doblas-Reyes, F. J., and Palmer, T. N.: The rationale behind the
success of multi-model ensembles in seasonal forecasting – I. Basic
concept, Tellus A, 57, 219–233, https://doi.org/10.1111/j.1600-0870.2005.00103.x,
2005. a
Hanel, M., Buishand, T. A., and Ferro, C. A. T.: A nonstationary index flood
model for precipitation extremes in transient regional climate model
simulations, J. Geophys. Res.-Atmos., 114, D15107,
https://doi.org/10.1029/2009JD011712, 2009. a
Hawkins, E., Ortega, P., Suckling, E. B., A., S., Hegerl, G. C., Jones, P. D.,
Joshi, M. M., Osborn, T. J., Masson-Delmotte, V., Mignot, J., Thorne, P. W.,
and van Oldenborgh, G. J.: Estimating changes in global temperature since the
pre-industrial period, B. Am. Meteorol. Soc., 98, 1841–1856,
https://doi.org/10.1175/BAMS-D-16-0007.1, 2017. a
Hermida, A., Fletcher, F., Korell, D., and Logan, D.: SHARE, LIKE, RECOMMEND,
Journalism Studies, 13, 815–824, https://doi.org/10.1080/1461670X.2012.664430, 2012. a
Herring, S. C., Christidis, N., Hoell, A., Kassin, J. P., Schreck III, C. J.,
and Stott, P. A. E.: Explaining Extreme Events of 2016 from a Climate
Perspective, B. Am. Meteorol. Soc., 99, S1–S157, 2018. a
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing E-OBS European
high-resolution gridded data set of daily precipitation and surface
temperature, J. Geophys. Res.-Atmos., 114, D21101,
https://doi.org/10.1029/2009JD011799, 2009. a, b
Hofstra, N., New, M., and McSweeney, C.: The influence of interpolation and
station network density on the distributions and trends of climate variables
in gridded daily data, Clim. Dynam., 35, 841–858,
https://doi.org/10.1007/s00382-009-0698-1, 2010. a, b
Jézéquel, A., Dépoues, V., Guillemot, H., Trolliet, M.,
Vanderlinden, J.-P., and Yiou, P.: Behind the veil of extreme event
attribution, Clim. Change, 149, 367–383, https://doi.org/10.1007/s10584-018-2252-9,
2018. a
Kam, J., Knutson, T. R., and Milly, P. C. D.: Climate Model Assessment of
Changes in Winter–Spring Streamflow Timing over North America, J.
Climate, 31, 5581–5593, https://doi.org/10.1175/JCLI-D-17-0813.1, 2018. a, b
Kam, J., Stowers, K., and Kim, S.: Monitoring of Drought Awareness from Google
Trends: A Case Study of the 2011–17 California Drought, Weather Clim.
Soc., 11, 419–429, https://doi.org/10.1175/WCAS-D-18-0085.1, 2019. a
Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of extremes in
hydrology, Adv. Water Resour., 25, 1287–1304,
https://doi.org/10.1016/S0309-1708(02)00056-8, 2002. a, b, c
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and
Senior, C. A.: Heavier summer downpours with climate change revealed by
weather forecast resolution model, Nat. Clim. Change, 4, 570–576,
https://doi.org/10.1038/nclimate2258, 2014. a
Kew, S. F., Philip, S. Y., Hauser, M., Hobbins, M., Wanders, N., van Oldenborgh, G. J., van der Wiel, K., Veldkamp, T. I. E., Kimutai, J., Funk, C., and Otto, F. E. L.: Impact of precipitation and increasing temperatures on drought in eastern Africa, Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-20, accepted, 2020. a
Kharin, V. V., Zwiers, F. W., and Zhang, X.: Intercomparison of Near-Surface
Temperature and Precipitation Extremes in AMIP-2 Simulations, Reanalyses, and
Observations, J. Climate, 18, 5201–5223, https://doi.org/10.1175/JCLI3597.1, 2005. a
King, A. D., Alexander, L. V., and Donat, M. G.: The efficacy of using gridded
data to examine extreme rainfall characteristics: a case study for Australia,
Int. J. Climatol., 33, 2376–2387, https://doi.org/10.1002/joc.3588,
2013a. a
King, A. D., Lewis, S. C., Perkins, S. E., Alexander, L. V., Donat, M. G.,
Karoly, D. J., and Black, M. T.: Limited Evidence of Anthropogenic Influence
on the 2011-12 Extreme Rainfall over Southeast Australia, B. Am. Meteorol. Soc., 94, S55–S58, https://doi.org/10.1175/BAMS-D-13-00085.1,
2013b. a
King, A. D., van Oldenborgh, G. J., Karoly, D. J., Lewis, S. C., and Cullen,
H.: Attribution of the record high Central England temperature of 2014 to
anthropogenic influences, Environ. Res. Lett., 10, 054002,
https://doi.org/10.1088/1748-9326/10/5/054002, 2015. a, b
King, A. D., van Oldenborgh, G. J., and Karoly, D. J.: Climate Change and El
Niño increase likelihood of Indonesian heat and drought, B. Am. Meteorol. Soc., 97, S113–S117, https://doi.org/10.1175/BAMS-D-16-0164.1, 2016. a, b
Laloyaux, P., De Boisseson, E., and Dahlgren, P.: CERA-20C: An Earth system
approach to climate reanalysis, ECMWF Newsletter, winter 2017,
available at: https://www.ecmwf.int/en/newsletter/150/meteorology/cera-20c-earth-system-approach-climate-reanalysis (last access: 19 December 2019),
2017. a
Lenderink, G. and van Meijgaard, E.: Increase in hourly precipitation extremes
beyond expectations from temperature changes, Nat. Geosci., 1, 511–514,
https://doi.org/10.1038/ngeo262, 2008. a
Lewandowsky, S., Oreskes, N., Risbey, J. S., Newell, B. R., and Smithson, M.:
Seepage: Climate change denial and its effect on the scientific community,
Global Environ. Change, 33, 1–13,
https://doi.org/10.1016/j.gloenvcha.2015.02.013, 2015. a
Lloyd, E. A. and Oreskes, N.: Climate Change Attribution: When Is It
Appropriate to Accept New Methods?, Earth's Future, 6, 311–325,
https://doi.org/10.1002/2017EF000665, 2018. a
Lott, F. C. and Stott, P. A.: Evaluating Simulated Fraction of Attributable
Risk Using Climate Observations, J. Climate, 29, 4565–4575,
https://doi.org/10.1175/JCLI-D-15-0566.1, 2016. a
Luu, L. N., Vautard, R., P., Y., van Oldenborgh, G. J., and Lenderink, G.:
Attribution of Extreme Rainfall Events in the South of France Using
EURO-CORDEX Simulations, Geophys. Res. Lett., 45, 6242–625,
https://doi.org/10.1029/2018GL077807, 2018. a, b, c, d
Manley, G.: Central England temperatures: Monthly means 1659 to 1973, Q.
J. Roy. Meteor. Soc., 100, 389–405,
https://doi.org/10.1002/qj.49710042511,
1974. a, b
Meredith, E. P., Semenov, V. A., Maraun, D., Park, W., and Chernokulsky, A. V.:
Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation
extreme, Nat. Geosci., 8, 615 EP,
https://doi.org/10.1038/ngeo2483, 2015. a
Mitchell, D., Heaviside, C., Vardoulakis, S., Huntingford, C., Masato, G.,
Guillod, B. P., Frumhoff, P., Bowery, A., Wallom, A., and Allen, M. R.:
Attributing human mortality during extreme heat waves to anthropogenic
climate change, Environ. Res. Lett., 11, 074006,
https://doi.org/10.1088/1748-9326/11/7/074006, 2016. a, b, c
Murakami, H., Vecchi, G. A., Underwood, S., Delworth, T. L., Wittenberg, A. T.,
Anderson, W. G., Chen, J.-H., Gudgel, R. G., Harris, L. W., Lin, S.-J., and
Zeng, F.: Simulation and Prediction of Category 4 and 5 Hurricanes in the
High-Resolution GFDL HiFLOR Coupled Climate Model, J. Climate, 28,
9058–9079, https://doi.org/10.1175/JCLI-D-15-0216.1, 2015. a, b
National Academies of Sciences, Engineering, and Medicine: Attribution of
Extreme Weather Events in the Context of Climate Change, The National
Academies Press, https://doi.org/10.17226/21852, 2016. a
Omrani, H., van Oldenborgh, G. J., Lenderink, G., and Vautard, R.: New insights
on conditional attribution of extreme weather event, Clim. Dynam., under
review, 2020. a
Otto, F. E.: Attribution of Weather and Climate Events, Annu. Rev.
Env. Resour., 42, 627–646,
https://doi.org/10.1146/annurev-environ-102016-060847, 2017. a
Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., and Allen,
M. R.: Reconciling two approaches to attribution of the 2010 Russian heat
wave, Geophys. Res. Lett., 39, L04702, https://doi.org/10.1029/2011GL050422, 2012. a, b
Otto, F. E. L., Coelho, C. A. S., King, A., Coughlan de Perez, E., Wada, Y.,
van Oldenborgh, G. J., Haarsma, R., Haustein, K., Uhe, P., van Aalst, M.,
Aravequia, J. A., Almeida, W., and Cullen, H.: Factors other than climate
change, main drivers of 2014/15 water shortage in southeast Brazil, B. Am. Meteorol. Soc., 96, S35–S40, https://doi.org/10.1175/BAMS-D-15-00120.1, 2015. a, b, c
Otto, F. E. L., van Oldenborgh, G. J., Eden, J. M., Stott, P. A., Karoly,
D. J., and Allen, M. R.: The attribution question, Nat. Clim. Change, 6,
813–816, https://doi.org/10.1038/nclimate3089, 2016. a
Otto, F. E. L., an der Wiel, K., van Oldenborgh, G. J., Philip, S. Y., Kew,
S. F., Uhe, P., and Cullen, H.: Climate change increases the probability of
heavy rains in Northern England/Southern Scotland like those of storm
Desmond – a real-time event attribution revisited, Environ. Res. Lett.,
13, 024006, https://doi.org/10.1088/1748-9326/aa9663, 2018a. a, b, c, d, e, f
Otto, F. E. L., Philip, S. Y., Kew, S. F., Li, S., King, A. D., and Cullen, H.:
Attributing high-impact extreme events across timescales – a case study of
four different types of events, Clim. Change, 149, 399–412,
https://doi.org/10.1007/s10584-018-2258-3, 2018b. a, b, c
Otto, F. E. L., Wolski, P., Lehner, F., Tebaldi, C., van Oldenborgh, G. J.,
Hogesteeger, S., Singh, R., Holden, P., Fuckar, N. S., Odoulami, R., and New,
M.: Anthropogenic influence on the drivers of the Western Cape drought
2015–2017, Environ. Res. Lett., 13, 124010,
https://doi.org/10.1088/1748-9326/aae9f9, 2018c. a, b
Parker, D. E., Legg, T. P., and Folland, C. K.: A new daily central England
temperature series, 1772–1991, Int. J. Climatol., 12,
317–342, https://doi.org/10.1002/joc.3370120402,
1992. a
Philip, S., Sparrow, S., Kew, S. F., van der Wiel, K., Wanders, N., Singh, R., Hassan, A., Mohammed, K., Javid, H., Haustein, K., Otto, F. E. L., Hirpa, F., Rimi, R. H., Islam, A. K. M. S., Wallom, D. C. H., and van Oldenborgh, G. J.: Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives, Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, 2019. a, b, c, d, e
Philip, S. Y., Kew, S. F., Hauser, M., Guillod, B. P., Teuling, A. J., Whan,
K., Uhe, P., and v. Oldenborgh, G. J.: Western US high June 2015
temperatures and their relation to global warming and soil moisture, Clim.
Dynam., 50, 2587–2601, https://doi.org/10.1007/s00382-017-3759-x, 2018a. a
Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Aalbers, E., Otto, F. E. L.,
Haustein, K., Habets, F., and Singh, R.: Validation of a rapid attribution of
the May/June 2016 flood-inducing precipitation in France to climate
change, J. Hydrometeorol., 19, 1881–1898,
https://doi.org/10.1175/JHM-D-18-0074.1, 2018b. a, b, c, d, e
Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Otto, F. E. L., O'Keefe, S.,
Haustein, K., King, A. D., Zegeye, A., Eshetu, Z., Hailemariam, K., Singh,
R. K., Jjemba, E., Funk, C., and Cullen, H.: Attribution analysis of the
Ethiopian drought of 2015, J. Climate, 31, 2465–2486,
https://doi.org/10.1175/JCLI-D-17-0274.1, 2018c. a, b, c, d, e, f, g
Puma, M. J. and Cook, B. I.: Effects of irrigation on global climate during the
20th century, J. Geophys. Res.-Atmos., 115, D16120,
https://doi.org/10.1029/2010JD014122, d16120, 2010. a
Risser, M. D. and Wehner, M. F.: Attributable Human-Induced Changes in the
Likelihood and Magnitude of the Observed Extreme Precipitation during
Hurricane Harvey, Geophys. Res. Lett., 44, 12457–12464,
https://doi.org/10.1002/2017GL075888, 2017. a
Schaller, N., Kay, A. L., Lamb, R., Massey, N. R., van Oldenborgh, G. J., Otto,
F. E. L., Sparrow, S. N., Vautard, R., Yiou, P., Bowery, A., Crooks, S. M.,
Huntingford, C., Ingram, W. J., Jones, R. G., Legg, T., Miller, J., Skeggs,
J., Wallom, D., Weisheimer, A., Wilson, S., and Allen, M. R.: The human
influence on climate in the winter 2013/2014 floods in southern England,
Nat. Clim. Change, 6, 627–634, https://doi.org/10.1038/nclimate2927, 2016. a, b, c, d
Shearer, E. and Grieco, E.: Americans Are Wary of the Role Social Media Sites
Play in Delivering the News, Tech. rep., The Pew Charitable Trusts,
available at: https://www.journalism.org/2019/10/02/americans-are-wary-of-the-role-social-media-sites-play-in-delivering-the-news/ (last access: 11 May 2020),
2019. a
Shepherd, T. G.: A Common Framework for Approaches to Extreme Event
Attribution, Current Climate Change Reports, 2, 28–38,
https://doi.org/10.1007/s40641-016-0033-y, 2016. a, b
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 1.
Model evaluation in the present climate, J. Geophys. Res.-Atmos., 118,
1716–1733, https://doi.org/10.1002/jgrd.50203, 2013. a
Sippel, S., Otto, F. E. L., Flach, M., and van Oldenborgh, G. J.: The Role of
Anthropogenic Warming in 2015 Central European Heat Waves, B. Am. Meteorol. Soc., 97, S51–S56, https://doi.org/10.1175/BAMS-D-16-0150.1, 2016. a, b
Siswanto, van Oldenborgh, G. J., van der Schrier, G., Lenderink, G., and
van den Hurk, B. J. J. M.: Trends in high-daily precipitation events in
Jakarta and the flooding of January 2014, B. Am. Meteorol. Soc., 96,
S131–S135, https://doi.org/10.1175/BAMS-D-15-00128.1, 2015. a
Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J.-P., van
Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and
Zwiers, F. W.: Attribution of extreme weather and climate-related events,
WIREs Clim. Change, 7, 23–41, https://doi.org/10.1002/wcc.380, 2016. a
Sun, L., Allured, D., Hoerling, M., Smith, L., Perlwitz, J., Murray, D., and
Eischeid, J.: Drivers of 2016 record Arctic warmth assessed using climate
simulations subjected to Factual and Counterfactual forcing, Weather and
Climate Extremes, 19, 1–9, https://doi.org/10.1016/j.wace.2017.11.001, 2018. a
Tebaldi, C. and Arblaster, J. M.: Pattern scaling: Its strengths and
limitations, and an update on the latest model simulations, Clim. Change,
122, 459–471, https://doi.org/10.1007/s10584-013-1032-9, 2014. a
Tobin, I., Greuell, W., Jerez, S., Ludwig, F., Vautard, R., van Vliet, M.
T. H., and Bréon, F.-M.: Vulnerabilities and resilience of European
power generation to 1.5 ∘C, 2 ∘C and 3 ∘C
warming, Environ. Res. Lett., 13, 044024,
https://doi.org/10.1088/1748-9326/aab211, 2018. a
Uhe, P., Otto, F. E. L., Haustein, K., van Oldenborgh, G. J., King, A., Wallom,
D., Allen, M. R., and Cullen, H.: Comparison of Methods: Attributing the 2014
record European temperatures to human influences, Geophys. Res. Lett., 43, 8685–8693,
https://doi.org/10.1002/2016GL069568, 2016. a, b, c
Uhe, P., Philip, S. Y., Kew, S. F., Shah, K., Kimutai, J., Mwangi, E., van
Oldenborgh, G. J., Singh, R. K., Arrighi, J., Jjemba, E., Cullen, H., and
Otto, F. E. L.: Attributing drivers of the 2016 Kenyan drought, Int. J. Climatol., 38, e554–e568, https://doi.org/10.1002/joc.5389, 2018. a, b, c, d
van den Brink, H. W. and Können, G. P.: Estimating 10000-year return
values from short time series, Int. J. Climatol., 31, 115–126,
https://doi.org/10.1002/joc.2047, 2011. a
van der Bles, A., van der Linden, S., Freeman, A., and Spiegelhalter, D.: The
effects of communicating uncertainty about facts and numbers, in:
Evidence-Based Medicine, 23 (Suppl 1), pp. A9–A10, BMJ,
available at: https://ebm.bmj.com/content/23/Suppl_1/A9.2 (last access: 19 December 2019), 2018. a
van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Philip, S., Vecchi, G. A., Singh, R. K., Arrighi, J., and Cullen, H.: Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change, Hydrol. Earth Syst. Sci., 21, 897–921, https://doi.org/10.5194/hess-21-897-2017, 2017. a, b, c, d, e, f, g, h, i, j
van der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R., and Screen,
J. A.: Ensemble climate-impact modelling: extreme impacts from moderate
meteorological conditions, Environ. Res. Lett., 15, 034050,
https://doi.org/10.1088/1748-9326/ab7668, 2020. a
van Engelen, A. and Nellestijn, J. W.: Monthly, seasonal and annual means of
air temperature in tenths of centigrades in De Bilt, Netherlands,
1706–1995, Tech. rep., KNMI report from the Climatological Services Branch, De Bilt, 1996. a
van Oldenborgh, G. J., Drijfhout, S., van Ulden, A., Haarsma, R., Sterl, A., Severijns, C., Hazeleger, W., and Dijkstra, H.: Western Europe is warming much faster than expected, Clim. Past, 5, 1–12, https://doi.org/10.5194/cp-5-1-2009, 2009. a
van Oldenborgh, G. J., Doblas-Reyes, F. J., Wouters, B., and Hazeleger, W.:
Decadal prediction skill in a multi-model ensemble, Clim. Dynam., 38,
1263–1280, https://doi.org/10.1007/s00382-012-1313-4, 2012a. a
van Oldenborgh, G. J., van Urk, A., and Allen, M. R.: The absence of a role of
climate change in the 2011 Thailand floods, B. Am. Meteorol. Soc., 9,
1047–1049, https://doi.org/10.1175/BAMS-D-12-00021.1, 2012b. a
van Oldenborgh, G. J., Doblas Reyes, F. J., Drijfhout, S. S., and Hawkins, E.:
Reliability of regional climate model trends, Environ. Res. Lett., 8,
014055, https://doi.org/10.1088/1748-9326/8/1/014055, 2013. a
van Oldenborgh, G. J., Haarsma, R., De Vries, H., and Allen, M. R.: Cold
Extremes in North America vs. Mild Weather in Europe: The Winter of
2013–14 in the Context of a Warming World, B. Am.
Meteorol. Soc., 96, 707–714, https://doi.org/10.1175/BAMS-D-14-00036.1, 2015. a, b
van Oldenborgh, G. J., Macias-Fauria, M., King, A., Uhe, P., Philip, S. Y., Kew, S. F., Karoly, D., Otto, F. E. L., Allen, M., and Cullen, H.: Unusually high temperatures at the North Pole, winter
2016, Tech. rep., World Weather Attribution,
available at: https://www.worldweatherattribution.org/north-pole-nov-dec-2016/ (last access: 31 October 2018),
2016a. a, b, c
van Oldenborgh, G. J., Otto, F. E. L., Haustein, K., and Achuta Rao, K.: The
heavy precipitation event of December 2015 in Chennai, India, B. Am. Meteorol. Soc., 97, S87–S91, https://doi.org/10.1175/BAMS-D-16-0129.1,
2016b. a, b
van Oldenborgh, G. J., van der Wiel, K., Sebastian, A., Singh, R. K., Arrighi,
J., Otto, F. E. L., Haustein, K., Li, S., Vecchi, G. A., and Cullen, H.:
Attribution of extreme rainfall from Hurricane Harvey, August 2017,
Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2, 2017. a, b, c, d, e, f
Vautard, R., Cattiaux, J., Yiou, P., Thepaut, J.-N., and Ciais, P.: Northern
Hemisphere atmospheric stilling partly attributed to an increase in surface
roughness, Nat. Geosci., 3, 756–761, https://doi.org/10.1038/ngeo979, 2010. a
Vautard, R., van Oldenborgh, G. J., Thao, S., Dubuisson, B., Lenderink, G.,
Ribes, A., Soubeyroux, J. M., Yiou, P., and Planton, S.: Extreme fall 2014
precipitations in the Cévennes mountain range, B. Am. Meteorol. Soc.,
96, S56–S60, https://doi.org/10.1175/BAMS-D-15-00088.1, 2015. a, b, c
Vautard, R., Yiou, P., Otto, F. E. L., Stott, P. A., Christidis, N., van
Oldenborgh, G. J., and Schaller, N.: Attribution of human-induced dynamical
and thermodynamical contributions in extreme weather events, Environ. Res. Lett., 11, 114009, https://doi.org/10.1088/1748-9326/11/11/114009, 2016. a
Vautard, R., Christidis, N., Ciavarella, A., Alvarex-Castro, C., Bellprat, O.,
Christensen, O. B., Colfescu, I., Cowan, T., Doblas Reyes, F. J., Eden,
J. M., Hauser, M., Hegerl, G. C., Hempelmann, N., Klehmet, K., Lott, F. C.,
Nangini, C., Orth, R., Radanovics, S., Seneviratne, S. I., van Oldenborgh,
G. J., Stott, P. A., Tett, S., Wilcox, L., and Yiou, P.: Evaluation of the
HadGEM3-A simulations in view of climate and weather event human influence
attribution in Europe, Clim. Dynam., 52, 1187–1210,
https://doi.org/10.1007/s00382-018-4183-6, 2018. a
Vautard, R., van Oldenborgh, G. J., Otto, F. E. L., Yiou, P., de Vries, H., van Meijgaard, E., Stepek, A., Soubeyroux, J.-M., Philip, S., Kew, S. F., Costella, C., Singh, R., and Tebaldi, C.: Human influence on European winter wind storms such as those of January 2018, Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, 2019.
a, b, c, d, e, f
Wild, M.: Global dimming and brightening: a review, J. Geophys. Res., 114,
D00D16, https://doi.org/10.1029/2008JD011470, 2009. a
Ye, Y., Xu, P., and Zhang, M.: Social media, public discourse and civic
engagement in modern China, Telemat. Inform., 34, 705–714,
https://doi.org/10.1016/j.tele.2016.05.021, 2017. a
Yokohata, T., Annan, J., Collins, M., Jackson, C., Tobis, M., Webb, M., and
Hargreaves, J.: Reliability of multi-model and structurally different
single-model ensembles, Clim. Dynam., 39, 599–616,
https://doi.org/10.1007/s00382-011-1203-1, 2012. a
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Event attribution studies can now be performed at short notice. We document a protocol developed...