Articles | Volume 6, issue 1
https://doi.org/10.5194/ascmo-6-31-2020
https://doi.org/10.5194/ascmo-6-31-2020
30 Apr 2020
 | 30 Apr 2020

Possible impacts of climate change on fog in the Arctic and subpolar North Atlantic

Richard E. Danielson, Minghong Zhang, and William A. Perrie

Related authors

On Quadruplet Interactions for Ocean Surface Waves
Adhi Susilo, Will Perrie, and Bash Toulany
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-256,https://doi.org/10.5194/gmd-2017-256, 2017
Preprint retracted
Short summary

Related subject area

Climate research
Comparing climate time series – Part 4: Annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 187–203, https://doi.org/10.5194/ascmo-8-187-2022,https://doi.org/10.5194/ascmo-8-187-2022, 2022
Short summary
Statistical reconstruction of European winter snowfall in reanalysis and climate models based on air temperature and total precipitation
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022,https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
A multi-method framework for global real-time climate attribution
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022,https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Analysis of the evolution of parametric drivers of high-end sea-level hazards
Alana Hough and Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 117–134, https://doi.org/10.5194/ascmo-8-117-2022,https://doi.org/10.5194/ascmo-8-117-2022, 2022
Short summary
Comparing climate time series – Part 3: Discriminant analysis
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 97–115, https://doi.org/10.5194/ascmo-8-97-2022,https://doi.org/10.5194/ascmo-8-97-2022, 2022
Short summary

Cited articles

Altman, D. G. and Bland, J. M.: Measurement in medicine: The analysis of method comparison studies, Statistician, 32, 307–317, 1983. a
Bennett, J. C., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K., Katzfey, J. J., Post, D. A., and Bindoff, N. L.: Performance of an empirical bias-correction of a high-resolution climate dataset, Int. J. Climatol., 34, 2189–2204, https://doi.org/10.1002/joc.3830, 2014. a, b
Bentamy, A., Piollé, J.-F., Grouazel, A., Danielson, R. E., Gulev, S. K., Paul, F., Azelmat, H., Mathieu, P.-P., von Schuckmann, K., Sathyendranath, S., Evers-King, H., Esau, I., Johannessen, J. A., Clayson, C. A., Pinker, R. T., Grodsky, S. A., Bourassa, M., Smith, S. R., Haines, K., Valdivieso, M., Merchant, C. J., Chapron, B., Anderson, A., Hollmann, R., and Josey, S. A.: Review and assessment of latent and sensible heat flux accuracy over global oceans, Remote Sens. Environ., 201, 196–218, https://doi.org/10.1016/j.rse.2017.08.016, 2017. a
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kållberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim archive Version 2.0, ERA Report Series No. 1, available at: https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20 (last access: October 2018), 2011. a
Beven, K.: Towards a methodology for testing models as hypotheses in the inexact sciences, P. Roy. Soc. A-Math. Phy., 475, 1–19, https://doi.org/10.1098/rspa.2018.0862, 2019. a
Download
Short summary
Visibility is estimated for the 21st century using global and regional climate model output. A baseline decrease in visibility in the Arctic (10 %) is more notable than in the North Atlantic (< 5 %). We develop an adjustment that yields greater consistency among models and explore the justification of our ad hoc adjustment toward ship observations during the historical period. Baseline estimates are found to be sensitive to the representation of temperature and humidity.