Articles | Volume 9, issue 2
https://doi.org/10.5194/ascmo-9-103-2023
https://doi.org/10.5194/ascmo-9-103-2023
04 Dec 2023
 | 04 Dec 2023

Regridding uncertainty for statistical downscaling of solar radiation

Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay

Related authors

Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech., 14, 7103–7121, https://doi.org/10.5194/amt-14-7103-2021,https://doi.org/10.5194/amt-14-7103-2021, 2021
Short summary
Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth
Felipe A. Mejia, Ben Kurtz, Keenan Murray, Laura M. Hinkelman, Manajit Sengupta, Yu Xie, and Jan Kleissl
Atmos. Meas. Tech., 9, 4151–4165, https://doi.org/10.5194/amt-9-4151-2016,https://doi.org/10.5194/amt-9-4151-2016, 2016
Short summary

Related subject area

Statistics
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary
Statistical modeling of the space–time relation between wind and significant wave height
Said Obakrim, Pierre Ailliot, Valérie Monbet, and Nicolas Raillard
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 67–81, https://doi.org/10.5194/ascmo-9-67-2023,https://doi.org/10.5194/ascmo-9-67-2023, 2023
Short summary
Modeling general circulation model bias via a combination of localized regression and quantile mapping methods
Benjamin James Washington, Lynne Seymour, and Thomas L. Mote
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 1–28, https://doi.org/10.5194/ascmo-9-1-2023,https://doi.org/10.5194/ascmo-9-1-2023, 2023
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory
Katarina Lashgari, Gudrun Brattström, Anders Moberg, and Rolf Sundberg
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 225–248, https://doi.org/10.5194/ascmo-8-225-2022,https://doi.org/10.5194/ascmo-8-225-2022, 2022
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022,https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary

Cited articles

Accadia, C., Mariani, S., Casaioli, M., Lavagnini, A., and Speranza, A.: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids, Weather Forecast., 18, 918–932, 2003. a
Bailey, M.: Regridding Uncertainty for Statistical Downscaling of Solar Radiation. In Advances in Statistical Climatology, Meteorology, and Oceanography, Zenodo [code], https://doi.org/10.5281/zenodo.10054998, 2023. a
Berndt, C. and Haberlandt, U.: Spatial interpolation of climate variables in Northern Germany-Influence of temporal resolution and network density, J. Hydrol., 15, 184–202, 2018. a
Chandler, R., Barnes, C., Brierley, C., and Alegre, R.: Regridding and interpolation of climate data for impacts modelling – some cautionary notes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4004, https://doi.org/10.5194/egusphere-egu22-4004, 2022. a
Cressie, N. and Wikle, C. K.: Statistics for Spatio-Temporal Data, John Wiley & Sons, Wiley Series in Probability and Statistics, 624 pp., ISBN 978-0-471-69274-4, 2011. a, b
Download
Short summary
To ensure photovoltaic (PV) plants last, we need to understand how climate change affects solar radiation. Climate models help predict future radiation for PV plants, but there is often uncertainty. We explore this uncertainty and its impact on building PV plants. We highlight the importance of considering uncertainties for accurate planning and management. A California case study shows a practical application for the solar industry.