Articles | Volume 9, issue 1
https://doi.org/10.5194/ascmo-9-67-2023
https://doi.org/10.5194/ascmo-9-67-2023
05 Jun 2023
 | 05 Jun 2023

Statistical modeling of the space–time relation between wind and significant wave height

Said Obakrim, Pierre Ailliot, Valérie Monbet, and Nicolas Raillard

Related authors

Deep learning for statistical downscaling of sea states
Marceau Michel, Said Obakrim, Nicolas Raillard, Pierre Ailliot, and Valérie Monbet
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 83–95, https://doi.org/10.5194/ascmo-8-83-2022,https://doi.org/10.5194/ascmo-8-83-2022, 2022
Short summary

Related subject area

Statistics
Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary
Parametric model for post-processing visibility ensemble forecasts
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024,https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary

Cited articles

Accensi, M. and Maisondieu, C.: HOMERE. Ifremer Laboratoire Comportement des Structures en Mer, Ifremer Laboratoire Spatial et In terfaces Air Mer, [data set], https://doi.org/10.12770/cf47e08d-1455-4254-955e-d66225c9dc90, 2015. a
Anderson, D., Rueda, A., Cagigal, L., Antolinez, J., Mendez, F., and Ruggiero, P.: Time-varying emulator for short and long-term analysis of coastal flood hazard potential, J. Geophys. Res.-Oceans, 124, 9209–9234, 2019. a
Ardhuin, F. and Orfila, A.: Wind waves, New Frontiers in Operational Oceanography, 14, 393–422, 2018. a, b, c, d, e
Ardhuin, F., Hanafin, J., Quilfen, Y., Chapron, B., Queffeulou, P., Obrebski, M., Sienkiewicz, J., and Vandemark, D.: Calibration of the IOWAGA global wave hindcast (1991–2011) using ECMWF and CFSR winds, in: Proceedings of the 2011 International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium, Kona, HI, USA, November 2014, vol. 30, 2011. a
Ardhuin, F., Stopa, J. E., Chapron, B., Collard, F., Husson, R., Jensen, R. E., Johannessen, J., Mouche, A., Passaro, M., Quartly, G. D., Swail, V., and Young, I.: Observing sea states, Front. Mar. Sci., 124, https://doi.org/10.3389/fmars.2019.00124, 2019. a
Download
Short summary
Ocean wave climate has a significant impact on human activities, and its understanding is of socioeconomic and environmental importance. In this study, we propose a statistical model that predicts wave heights in a location in the Bay of Biscay. The proposed method allows us to understand the spatiotemporal relationship between wind and waves and predicts well both wind seas and swells.