Articles | Volume 1, issue 1
https://doi.org/10.5194/ascmo-1-59-2015
https://doi.org/10.5194/ascmo-1-59-2015
16 Dec 2015
 | 16 Dec 2015

Autoregressive spatially varying coefficients model for predicting daily PM2.5 using VIIRS satellite AOT

E. M. Schliep, A. E. Gelfand, and D. M. Holland

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Al-Hamdan, M. Z., Crosson, W. L., Limaye, A. S., Rickman, D. L., Quattrochi, D. A., Estes Jr., M. G., Qualters, J. R., Sinclair, A. H., Tolsma, D. D., Adeniyi, K. A., and Niskar, A. S.: Methods for characterizing fine particulate matter using ground observations and remotely sensed data: potential use for environmental public health surveillance, J. Air Waste Manage., 59, 865–881, 2009.
Berrocal, V. J., Gelfand, A. E., and Holland, D. M.: A bivariate space-time downscaler under space and time misalignment, Ann. Appl. Stat., 4, 1942–1975, 2010.
Berrocal, V. J., Gelfand, A. E., and Holland, D. M.: Space-Time Data Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality, Biometrics, 68, 837–848, 2012.
Besag, J., York, J., and Mollié, A.: Bayesian image restoration, with two applications in spatial statistics, Ann. I. Stat. Math., 43, 1–20, 1991.
Chu, D. A., Ferrare, R., Szykman, J., Lewis, J., Scarino, A., Hains, J., Burton, S., Chen, G., Tsai, T., Hostetler, C., Hair, J., Holben, B., and Crawford, J.: Regional characteristics of the relationship between columnar AOD and surface PM2.5: Application of lidar aerosol extinction profiles over Baltimore-Washington Corridor during DISCOVER-AQ, Atmos. Environ., 101, 338–349, 2015.
Download
Short summary
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the US motivates the need for advanced statistical models to predict air quality metrics. We propose a statistical model that jointly models ground-monitoring station data and satellite-obtained data allowing for temporal and spatial misalignment, missingness, and spatially and temporally varying correlation to enhance prediction of particulate matter.