Articles | Volume 11, issue 1
https://doi.org/10.5194/ascmo-11-73-2025
https://doi.org/10.5194/ascmo-11-73-2025
17 Mar 2025
 | 17 Mar 2025

On inference of boxplot symbolic data: applications in climatology

Abdolnasser Sadeghkhani and Ali Sadeghkhani

Related subject area

Statistics
Proper scoring rules for multivariate probabilistic forecasts based on aggregation and transformation
Romain Pic, Clément Dombry, Philippe Naveau, and Maxime Taillardat
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 23–58, https://doi.org/10.5194/ascmo-11-23-2025,https://doi.org/10.5194/ascmo-11-23-2025, 2025
Short summary
Reducing reliability bias in assessments of extreme weather risk using calibrating priors
Stephen Jewson, Trevor Sweeting, and Lynne Jewson
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 1–22, https://doi.org/10.5194/ascmo-11-1-2025,https://doi.org/10.5194/ascmo-11-1-2025, 2025
Short summary
A non-stationary climate-informed weather generator for assessing future flood risks
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024,https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary
Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary

Cited articles

Arroyo, J., Maté, C., and Roque, A. M.-S.: Hierarchical clustering for boxplot variables, in: Data Science and Classification, edited by: Batagelj, V., Bock, H.-H., Ferligoj, A., and Žiberna, A., Springer, 59–66, https://doi.org/10.1007/3-540-34416-0_7, 2006. a
Benjamini, Y.: Opening the box of a boxplot, Am. Stat., 42, 257–262, 1988. a, b
Berkeley Earth: Climate Change: Earth Surface Temperature Data, Kaggle [data set], https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data (last access: 19 July 2024), 2017. a
Billard, L. and Diday, E.: Regression analysis for interval-valued data, in: Data analysis, classification, and related methods, edited by: Kiers, H. A. L., Rasson, J. P., Groenen, P. J. F., and Schader, M., Springer, 369–374, https://doi.org/10.1007/978-3-642-59789-3_58, 2000. a
Billard, L. and Diday, E.: From the statistics of data to the statistics of knowledge: symbolic data analysis, J. Am. Stat. Assoc., 98, 470–487, 2003. a
Download
Short summary
This paper presents a novel study on boxplot-valued data in climatological applications. Our methodologies are applied to the Berkeley Earth Surface Temperature Study. We validate our approaches through comprehensive simulations, comparing Bayesian and frequentist estimators for efficiency and accuracy. The results provide robust insights into climatic trends, particularly summer average temperatures across European countries. 
Share