Articles | Volume 2, issue 1
https://doi.org/10.5194/ascmo-2-1-2016
https://doi.org/10.5194/ascmo-2-1-2016
29 Feb 2016
 | 29 Feb 2016

Comparison of hidden and observed regime-switching autoregressive models for (u, v)-components of wind fields in the northeastern Atlantic

Julie Bessac, Pierre Ailliot, Julien Cattiaux, and Valerie Monbet

Related authors

A conditional approach for joint estimation of wind speed and direction under future climates
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, https://doi.org/10.5194/ascmo-8-205-2022,https://doi.org/10.5194/ascmo-8-205-2022, 2022
Short summary
Forecast score distributions with imperfect observations
Julie Bessac and Philippe Naveau
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 53–71, https://doi.org/10.5194/ascmo-7-53-2021,https://doi.org/10.5194/ascmo-7-53-2021, 2021
Short summary

Related subject area

Statistics
Reducing reliability bias in assessments of extreme weather risk using calibrating priors
Stephen Jewson, Trevor Sweeting, and Lynne Jewson
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 1–22, https://doi.org/10.5194/ascmo-11-1-2025,https://doi.org/10.5194/ascmo-11-1-2025, 2025
Short summary
A non-stationary climate-informed weather generator for assessing future flood risks
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024,https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary
Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary
Parametric model for post-processing visibility ensemble forecasts
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024,https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary

Cited articles

Ailliot, P. and Monbet, V.: Markov-switching autoregressive models for wind time series, Environ. Modell. Softw., 30, 92–101, 2012.
Ailliot, P., Monbet, V., and Prevosto, M.: An autoregressive model with time-varying coefficients for wind fields, Environmetrics, 17, 107–117, 2006.
Ailliot, P., Thompson, C., and Thomson, P.: Space time modeling of precipitation using a hidden Markov model and censored Gaussian distributions, J. Roy. Stat. Soc. C-App., 58, 405–426, 2009.
Ailliot, P., Bessac, J., Monbet, V., and Pene, F.: Non-homogeneous hidden Markov-switching models for wind time series, J. Stat. Plan. Infer., 160, 75–88, 2015.
Bardossy, A. and Plate, E. J.: Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28, 1247–1259, 1992.
Download
Short summary
Several multi-site stochastic generators of zonal and meridional components of wind are proposed in this paper. Various questions are explored, such as the modeling of the regime in a multi-site context, the extraction of relevant clusterings from extra variables or from the local wind data, and the link between weather types extracted from wind data and large-scale weather regimes. We also discuss the relative advantages of hidden and observed regime-switching models.
Share