Articles | Volume 2, issue 1
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 39–47, 2016
https://doi.org/10.5194/ascmo-2-39-2016
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 39–47, 2016
https://doi.org/10.5194/ascmo-2-39-2016

  09 Jun 2016

09 Jun 2016

Calibrating regionally downscaled precipitation over Norway through quantile-based approaches

David Bolin et al.

Related authors

Spatial trend analysis of gridded temperature data at varying spatial scales
Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 1–12, https://doi.org/10.5194/ascmo-6-1-2020,https://doi.org/10.5194/ascmo-6-1-2020, 2020
Short summary

Related subject area

Statistics
Forecast score distributions with imperfect observations
Julie Bessac and Philippe Naveau
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 53–71, https://doi.org/10.5194/ascmo-7-53-2021,https://doi.org/10.5194/ascmo-7-53-2021, 2021
Short summary
Novel measures for summarizing high-resolution forecast performance
Eric Gilleland
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 13–34, https://doi.org/10.5194/ascmo-7-13-2021,https://doi.org/10.5194/ascmo-7-13-2021, 2021
Short summary
Copula approach for simulated damages caused by landfalling US hurricanes
Thomas Patrick Leahy
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 1–11, https://doi.org/10.5194/ascmo-7-1-2021,https://doi.org/10.5194/ascmo-7-1-2021, 2021
Short summary
Nonstationary extreme value analysis for event attribution combining climate models and observations
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020,https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Comparing climate time series – Part 1: Univariate test
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 159–175, https://doi.org/10.5194/ascmo-6-159-2020,https://doi.org/10.5194/ascmo-6-159-2020, 2020
Short summary

Cited articles

Bjørge, D. and Haugen, J. E.: Simulation of present-day climate in HIRHAM using 'perfect' boundaries, RegClim Techn. Report 1, NILU, 1998.
Bolin, D., Lindström, J., Eklundh, L., and Lindgren, F.: Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields, Comput. Statist. and Data Anal., 53, 2885–2896, 2009.
Bolin, D., Frigessi, A., Guttorp, P., Haug, O., Orskaug, E., Scheel, I., and Wallin, J.: BiasCorrection code, available at: https://github.com/JonasWallin/BiasCorrection, last access: 16 March 2016..
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694, 2008.
Christensen, J. H., Kjellstrom, E., Giorgi, F., Lenderink, G., and Rummukainen, M.: Assigning relative weights to regional climate models: Exploring the concept, Clim. Res., 44, 179–194, 2010.