Articles | Volume 2, issue 1
https://doi.org/10.5194/ascmo-2-39-2016
https://doi.org/10.5194/ascmo-2-39-2016
09 Jun 2016
 | 09 Jun 2016

Calibrating regionally downscaled precipitation over Norway through quantile-based approaches

David Bolin, Arnoldo Frigessi, Peter Guttorp, Ola Haug, Elisabeth Orskaug, Ida Scheel, and Jonas Wallin

Related authors

Spatial trend analysis of gridded temperature data at varying spatial scales
Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 1–12, https://doi.org/10.5194/ascmo-6-1-2020,https://doi.org/10.5194/ascmo-6-1-2020, 2020
Short summary

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Bjørge, D. and Haugen, J. E.: Simulation of present-day climate in HIRHAM using 'perfect' boundaries, RegClim Techn. Report 1, NILU, 1998.
Bolin, D., Lindström, J., Eklundh, L., and Lindgren, F.: Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields, Comput. Statist. and Data Anal., 53, 2885–2896, 2009.
Bolin, D., Frigessi, A., Guttorp, P., Haug, O., Orskaug, E., Scheel, I., and Wallin, J.: BiasCorrection code, available at: https://github.com/JonasWallin/BiasCorrection, last access: 16 March 2016..
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694, 2008.
Christensen, J. H., Kjellstrom, E., Giorgi, F., Lenderink, G., and Rummukainen, M.: Assigning relative weights to regional climate models: Exploring the concept, Clim. Res., 44, 179–194, 2010.