Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 3, issue 2
https://doi.org/10.5194/ascmo-3-67-2017
https://doi.org/10.5194/ascmo-3-67-2017
14 Jul 2017
 | 14 Jul 2017

Assessing NARCCAP climate model effects using spatial confidence regions

Joshua P. French, Seth McGinnis, and Armin Schwartzman

Related authors

Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary
Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021,https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary

Related subject area

Statistics
Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary
Parametric model for post-processing visibility ensemble forecasts
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024,https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Arnold, J. B.: ggthemes: Extra Themes, Scales and Geoms for “ggplot2”, available at: https://CRAN.R-project.org/package=ggthemes (last access: 5 May 2017), R package version 3.0.3, 2016.
Benjamini, Y. and Heller, R.: False Discovery Rates for Spatial Signals, J. Am. Stat. Assoc., 102, 1272–1281, https://doi.org/10.1198/016214507000000941, 2007.
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B, 57, 289–300, 1995.
Bolin, D. and Lindgren, F.: Excursion and contour uncertainty regions for latent Gaussian models, J. Roy. Stat. Soc. B, 77, 85–106, https://doi.org/10.1111/rssb.12055, 2015.
Download
Short summary
We assess the mean temperature effect of global and regional climate model combinations for the...