Articles | Volume 4, issue 1/2
https://doi.org/10.5194/ascmo-4-37-2018
https://doi.org/10.5194/ascmo-4-37-2018
05 Dec 2018
 | 05 Dec 2018

Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures

Rasmus E. Benestad, Bob van Oort, Flavio Justino, Frode Stordal, Kajsa M. Parding, Abdelkader Mezghani, Helene B. Erlandsen, Jana Sillmann, and Milton E. Pereira-Flores

Related authors

Downscaling the probability of heavy rainfall over the Nordic countries
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025,https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Various ways of using empirical orthogonal functions for climate model evaluation
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023,https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
A Norwegian Approach to Downscaling
Rasmus E. Benestad
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-176,https://doi.org/10.5194/gmd-2021-176, 2021
Revised manuscript not accepted
Short summary
Simple and approximate estimations of future precipitation return values
Rasmus E. Benestad, Kajsa M. Parding, Abdelkader Mezghani, and Anita V. Dyrrdal
Nat. Hazards Earth Syst. Sci., 17, 993–1001, https://doi.org/10.5194/nhess-17-993-2017,https://doi.org/10.5194/nhess-17-993-2017, 2017
Short summary
The use of regression for assessing a seasonal forecast model experiment
Rasmus E. Benestad, Retish Senan, and Yvan Orsolini
Earth Syst. Dynam., 7, 851–861, https://doi.org/10.5194/esd-7-851-2016,https://doi.org/10.5194/esd-7-851-2016, 2016
Short summary

Related subject area

Climate research
Identifying time patterns of highland and lowland air temperature trends in Italy and the UK across monthly and annual scales
Chalachew Muluken Liyew, Elvira Di Nardo, Rosa Meo, and Stefano Ferraris
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 173–194, https://doi.org/10.5194/ascmo-10-173-2024,https://doi.org/10.5194/ascmo-10-173-2024, 2024
Short summary
Formally combining different lines of evidence in extreme-event attribution
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024,https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Environmental sensitivity of the Caribbean economic growth rate
Mark R. Jury
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 95–104, https://doi.org/10.5194/ascmo-10-95-2024,https://doi.org/10.5194/ascmo-10-95-2024, 2024
Short summary
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024,https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Changes in the distribution of annual maximum temperatures in Europe
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023,https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary

Cited articles

Asseng, S., Foster, I., and Turner, N.: The impact of temperature variability on wheat yields, Glob. Change Biol., 17, 997–1012, 2011. a
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., Sanctis, G. D., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A.-K., Müller, C., Kumar, S. N., Nendel, C., O'Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Rezaei, E. E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu, Y.: Rising temperatures reduce global wheat production, Nature Climate Change, 5, 143, https://doi.org/10.1038/nclimate2470, 2015. a
Barlow, K., Christy, B., O'Leary, G., Riffkin, P., and Nuttall, J.: Simulating the impact of extreme heat and frost events on wheat crop production: A review, Field Crop. Res., 171, 109–119, https://doi.org/10.1016/j.fcr.2014.11.010, 2015. a
Benestad, R.: Downscaling Climate Information, Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.27, 2016. a
Benestad, R.: Heatwave duration, https://doi.org/10.6084/m9.figshare.5769345.v2, 2018. a
Download
Short summary
A new study indicates that heatwaves in India will become more frequent and last longer with global warming. Its results were derived from a large number of global climate models, and the calculations differed from previous studies in the way they included advanced statistical theory. The projected changes in the Indian heatwaves will have a negative consequence for wheat crops in India.