Articles | Volume 4, issue 1/2
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, 2018
https://doi.org/10.5194/ascmo-4-37-2018
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, 2018
https://doi.org/10.5194/ascmo-4-37-2018
 
05 Dec 2018
05 Dec 2018

Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures

Rasmus E. Benestad et al.

Related authors

A Norwegian Approach to Downscaling
Rasmus E. Benestad
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-176,https://doi.org/10.5194/gmd-2021-176, 2021
Revised manuscript not accepted
Short summary
Simple and approximate estimations of future precipitation return values
Rasmus E. Benestad, Kajsa M. Parding, Abdelkader Mezghani, and Anita V. Dyrrdal
Nat. Hazards Earth Syst. Sci., 17, 993–1001, https://doi.org/10.5194/nhess-17-993-2017,https://doi.org/10.5194/nhess-17-993-2017, 2017
Short summary
The use of regression for assessing a seasonal forecast model experiment
Rasmus E. Benestad, Retish Senan, and Yvan Orsolini
Earth Syst. Dynam., 7, 851–861, https://doi.org/10.5194/esd-7-851-2016,https://doi.org/10.5194/esd-7-851-2016, 2016
Short summary
Comment on "Discussions on common errors in analyzing sea level accelerations, solar trends and global warming" by Scafetta (2013).
R. E. Benestad
Pattern Recogn. Phys., 1, 91–92, https://doi.org/10.5194/prp-1-91-2013,https://doi.org/10.5194/prp-1-91-2013, 2013
Agnotology: learning from mistakes
R. E. Benestad, H. O. Hygen, R. van Dorland, J. Cook, and D. Nuccitelli
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-4-451-2013,https://doi.org/10.5194/esdd-4-451-2013, 2013
Revised manuscript not accepted

Related subject area

Climate research
A multi-method framework for global real-time climate attribution
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022,https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Analysis of the evolution of parametric drivers of high-end sea-level hazards
Alana Hough and Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 117–134, https://doi.org/10.5194/ascmo-8-117-2022,https://doi.org/10.5194/ascmo-8-117-2022, 2022
Short summary
Comparing climate time series – Part 3: Discriminant analysis
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 97–115, https://doi.org/10.5194/ascmo-8-97-2022,https://doi.org/10.5194/ascmo-8-97-2022, 2022
Short summary
Spatial heterogeneity in rain-bearing winds, seasonality and rainfall variability in southern Africa's winter rainfall zone
Willem Stefaan Conradie, Piotr Wolski, and Bruce Charles Hewitson
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 31–62, https://doi.org/10.5194/ascmo-8-31-2022,https://doi.org/10.5194/ascmo-8-31-2022, 2022
Short summary
Spatial heterogeneity of 2015–2017 drought intensity in South Africa's winter rainfall zone
Willem Stefaan Conradie​​​​​​​, Piotr Wolski, and Bruce Charles Hewitson
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 63–81, https://doi.org/10.5194/ascmo-8-63-2022,https://doi.org/10.5194/ascmo-8-63-2022, 2022
Short summary

Cited articles

Asseng, S., Foster, I., and Turner, N.: The impact of temperature variability on wheat yields, Glob. Change Biol., 17, 997–1012, 2011. a
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., Sanctis, G. D., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A.-K., Müller, C., Kumar, S. N., Nendel, C., O'Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Rezaei, E. E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu, Y.: Rising temperatures reduce global wheat production, Nature Climate Change, 5, 143, https://doi.org/10.1038/nclimate2470, 2015. a
Barlow, K., Christy, B., O'Leary, G., Riffkin, P., and Nuttall, J.: Simulating the impact of extreme heat and frost events on wheat crop production: A review, Field Crop. Res., 171, 109–119, https://doi.org/10.1016/j.fcr.2014.11.010, 2015. a
Benestad, R.: Downscaling Climate Information, Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.27, 2016. a
Benestad, R.: Heatwave duration, https://doi.org/10.6084/m9.figshare.5769345.v2, 2018. a
Download
Short summary
A new study indicates that heatwaves in India will become more frequent and last longer with global warming. Its results were derived from a large number of global climate models, and the calculations differed from previous studies in the way they included advanced statistical theory. The projected changes in the Indian heatwaves will have a negative consequence for wheat crops in India.