Articles | Volume 6, issue 2
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 91–102, 2020
https://doi.org/10.5194/ascmo-6-91-2020
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 91–102, 2020
https://doi.org/10.5194/ascmo-6-91-2020
 
17 Sep 2020
17 Sep 2020

A new energy-balance approach to linear filtering for estimating effective radiative forcing from temperature time series

Donald P. Cummins et al.

Related authors

Climate Stories: Enabling and sustaining arts interventions in climate science communication
Ewan Woodley, Stewart Barr, Peter Stott, Pierrette Thomet, Sally Flint, Fiona Lovell, Evelyn O'Malley, Dan Plews, Chris Rapley, Celia Robbins, Rebecca Pearce, and Rebecca Sandover
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2022-7,https://doi.org/10.5194/gc-2022-7, 2022
Revised manuscript accepted for GC
Short summary
Quantification of extremal dependence in spatial natural hazard footprints: independence of windstorm gust speeds and its impact on aggregate losses
Laura C. Dawkins and David B. Stephenson
Nat. Hazards Earth Syst. Sci., 18, 2933–2949, https://doi.org/10.5194/nhess-18-2933-2018,https://doi.org/10.5194/nhess-18-2933-2018, 2018
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018,https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
The 21st century decline in damaging European windstorms
Laura C. Dawkins, David B. Stephenson, Julia F. Lockwood, and Paul E. Maisey
Nat. Hazards Earth Syst. Sci., 16, 1999–2007, https://doi.org/10.5194/nhess-16-1999-2016,https://doi.org/10.5194/nhess-16-1999-2016, 2016
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 2: Different natural hazard areas
K. J. Beven, S. Almeida, W. P. Aspinall, P. D. Bates, S. Blazkova, E. Borgomeo, K. Goda, J. C. Phillips, M. Simpson, P. J. Smith, D. B. Stephenson, T. Wagener, M. Watson, and K. L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-295,https://doi.org/10.5194/nhess-2015-295, 2016
Preprint withdrawn
Short summary

Related subject area

Climate research
A multi-method framework for global real-time climate attribution
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022,https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Analysis of the evolution of parametric drivers of high-end sea-level hazards
Alana Hough and Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 117–134, https://doi.org/10.5194/ascmo-8-117-2022,https://doi.org/10.5194/ascmo-8-117-2022, 2022
Short summary
Comparing climate time series – Part 3: Discriminant analysis
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 97–115, https://doi.org/10.5194/ascmo-8-97-2022,https://doi.org/10.5194/ascmo-8-97-2022, 2022
Short summary
Spatial heterogeneity in rain-bearing winds, seasonality and rainfall variability in southern Africa's winter rainfall zone
Willem Stefaan Conradie, Piotr Wolski, and Bruce Charles Hewitson
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 31–62, https://doi.org/10.5194/ascmo-8-31-2022,https://doi.org/10.5194/ascmo-8-31-2022, 2022
Short summary
Spatial heterogeneity of 2015–2017 drought intensity in South Africa's winter rainfall zone
Willem Stefaan Conradie​​​​​​​, Piotr Wolski, and Bruce Charles Hewitson
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 63–81, https://doi.org/10.5194/ascmo-8-63-2022,https://doi.org/10.5194/ascmo-8-63-2022, 2022
Short summary

Cited articles

Adler, A.: Pade: Padé Approximant Coefficients, available at: https://CRAN.R-project.org/package=Pade (last access: 9 August 2019), R package version 0.1-4, 2015. a
Aldrin, M., Holden, M., Guttorp, P., Skeie, R. B., Myhre, G., and Berntsen, T. K.: Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content, Environmetrics, 23, 253–271, https://doi.org/10.1002/env.2140, 2012. a
Allen, M. R. and Stott, P. A.: Estimating Signal Amplitudes in Optimal Fingerprinting, Part I: Theory, Clim. Dynam., 21, 477–491, https://doi.org/10.1007/s00382-003-0313-9, 2003. a
Allen, M. R. and Tett, S. F. B.: Checking for Model Consistency in Optimal Fingerprinting, Clim. Dynam., 15, 419–434, https://doi.org/10.1007/s003820050291, 1999. a
Álvarez, M., Luengo, D., and Lawrence, N. D.: Latent Force Models, in: Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, edited by: van Dyk, D. and Welling, M., vol. 5 of Proceedings of Machine Learning Research, pp. 9–16, PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, available at: http://proceedings.mlr.press/v5/alvarez09a.html (last access: 10 May 2020), 2009. a
Download
Short summary
We have developed a novel and fast statistical method for diagnosing effective radiative forcing (ERF), a measure of the net effect of greenhouse gas emissions on Earth's energy budget. Our method works by inverting a recursive digital filter energy balance representation of global climate models and has been successfully validated using simulated data from UK Met Office climate models. We have estimated time series of historical ERF by applying our method to the global temperature record.