Articles | Volume 9, issue 1
02 Feb 2023
 | 02 Feb 2023

Modeling general circulation model bias via a combination of localized regression and quantile mapping methods

Benjamin James Washington, Lynne Seymour, and Thomas L. Mote

Related authors

Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257,,, 2019
Short summary
A meandering polar jet caused the development of a Saharan cyclone and the transport of dust toward Greenland
Diana Francis, Clare Eayrs, Jean-Pierre Chaboureau, Thomas Mote, and David M. Holland
Adv. Sci. Res., 16, 49–56,,, 2019
Short summary
Characterizing severe weather potential in synoptically weakly forced thunderstorm environments
Paul W. Miller and Thomas L. Mote
Nat. Hazards Earth Syst. Sci., 18, 1261–1277,,, 2018
Short summary
Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy
S. Jeffrey Underwood, Michael D. Schultz, Metteo Berti, Carlo Gregoretti, Alessandro Simoni, Thomas L. Mote, and Anthony M. Saylor
Nat. Hazards Earth Syst. Sci., 16, 509–528,,, 2016
Short summary

Related subject area

Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102,,, 2023
Short summary
Statistical modeling of the space–time relation between wind and significant wave height
Said Obakrim, Pierre Ailliot, Valérie Monbet, and Nicolas Raillard
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 67–81,,, 2023
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory
Katarina Lashgari, Gudrun Brattström, Anders Moberg, and Rolf Sundberg
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 225–248,,, 2022
Short summary
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271,,, 2022
Short summary
A conditional approach for joint estimation of wind speed and direction under future climates
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224,,, 2022
Short summary

Cited articles

Ananthakrishnan, R., Bell, G., Cinquini, L., Crichton, D., Danvil, S., Drach, B., Fiore, S., Gonzalez, E., Harney, J. F., and Mattmann, C.: The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data, Tech. rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Center for Computational Sciences,, 2013. a
Angeles, M. E., Gonzalez, J. E., Erickson III, D. J., and Hernández, J. L.: Predictions of future climate change in the Caribbean region using global general circulation models, Int. J. Climatol., 27, 555–569, 2007. a
Angeles, M. E., González, J. E., Ramírez-Beltrán, N. D., Tepley, C. A., and Comarazamy, D. E.: Origins of the Caribbean rainfall bimodal behavior, J. Geophys. Res.-Atmos., 115, D11106,, 2010. a, b
Ben Alaya, M. A., Chebana, F., and Ouarda, T.: Probabilistic Gaussian copula regression model for multisite and multivariable downscaling, J. Climate, 27, 3331–3347, 2014. a
Bhardwaj, A., Misra, V., Mishra, A., Wootten, A., Boyles, R., Bowden, J., and Terando, A. J.: Downscaling future climate change projections over Puerto Rico using a non-hydrostatic atmospheric model, Climatic Change, 147, 133–147, 2018. a
Short summary
We develop new methodology to statistically model known bias in general atmospheric circulation models. We focus on Puerto Rico specifically because of other important ongoing and long-term ecological and environmental research taking place there. Our methods work even in the presence of Puerto Rico's broken climate record. With our methods, we find that climate change will not only favor a warmer and wetter climate in Puerto Rico, but also increase the frequency of extreme rainfall events.