Biasutti, M., Sobel, A. H., Camargo, S. J., and Creyts, T. T.: Projected
changes in the physical climate of the Gulf Coast and Caribbean,
Climatic Change, 112, 819–845, 2012.
a,
b,
c,
d,
e,
f
Bowden, J. H., Terando, A. J., Misra, V., Wootten, A., Bhardwaj, A., Boyles,
R., Gould, W., Collazo, J. A., and Spero, T. L.: High-resolution dynamically
downscaled rainfall and temperature projections for ecological life zones
within Puerto Rico and for the US Virgin Islands, Int. J.
Climatol., 41, 1305–1327, 2021.
a,
b,
c
Campbell, J. D., Taylor, M. A., Stephenson, T. S., Watson, R. A., and Whyte,
F. S.: Future climate of the Caribbean from a regional climate model,
Int. J. Climatol., 31, 1866–1878, 2011.
a,
b,
c
Cannon, A. J.: Multivariate quantile mapping bias correction: an
N-dimensional probability density function transform for climate model
simulations of multiple variables, Clim. Dynam., 50, 31–49, 2018.
a,
b,
c
Cashman, A., Nurse, L., and John, C.: Climate change in the Caribbean: The
water management implications, J. Environ. Dev.,
19, 42–67, 2010.
a,
b
Centella, A., Bezanilla, A., and Leslie, K.: Technical report: A study of the
uncertainty in future Caribbean climate using the PRECIS regional climate
model, Institute of Meteorology, Community Caribbean Climate Change Centre,
Cuba,
https://www.eldis.org/document/A60777 (last access: 26 January 2023), 2008. a
Chen, A. A. and Taylor, M. A.: Investigating the link between early season
Caribbean rainfall and the El Niño+ 1 year, Int. J.
Climatol., 22, 87–106,
2002. a
Chen, D., Dai, A., and Hall, A.: The Convective-To-Total Precipitation Ratio
and the “Drizzling” Bias in Climate Models, J. Geophys.
Res.-Atmos., 126, e2020JD034198,
https://doi.org/10.1029/2020JD034198, 2021.
a
Cinquini, L., Crichton, D., Mattmann, C., Harney, J., Shipman, G., Wang, F.,
Ananthakrishnan, R., Miller, N., Denvil, S., and Morgan, M.: The Earth
System Grid Federation: An open infrastructure for access to
distributed geospatial data, Future Gener. Comp. Sy., 36,
400–417, 2014. a
Cleveland, W. S., Grosse, E., and Shyu, W. M.: Local regression models, in:
Statistical Models in S, Routledge, 309–376, ISBN 9780203738535, 2017.
a,
b
Comarazamy, D. E. and González, J. E.: On the validation of the simulation
of early season precipitation on the island of Puerto Rico using a mesoscale
atmospheric model, J. Hydrometeorol., 9, 507–520, 2008. a
Girvetz, E. H., Zganjar, C., Raber, G. T., Maurer, E. P., Kareiva, P., and
Lawler, J. J.: Applied climate-change analysis: the climate wizard tool, PLoS
One, 4,
https://doi.org/10.1371/journal.pone.0008320, 2009.
a,
b
Guo, Q., Chen, J., Zhang, X., Shen, M., Chen, H., and Guo, S.: A new two-stage
multivariate quantile mapping method for bias correcting climate model
outputs, Clim. Dynam., 53, 3603–3623, 2019. a
Gutowski Jr., W. J., Decker, S. G., Donavon, R. A., Pan, Z., Arritt, R. W., and
Takle, E. S.: Temporal-spatial scales of observed and simulated precipitation
in central US climate, J. Climate, 16, 3841–3847, 2003. a
Harmsen, E. W., Miller, N. L., Schlegel, N. J., and Gonzalez, J. E.: Seasonal
climate change impacts on evapotranspiration, precipitation deficit and crop
yield in Puerto Rico, Agr. Water Manage., 96, 1085–1095,
2009. a
He, J. and Soden, B. J.: A re-examination of the projected subtropical
precipitation decline, Nat. Clim. Change, 7, 53–57, 2017.
a,
b
Jennings, L. N., Douglas, J., Treasure, E., and González, G.: Climate
change effects in El Yunque National Forest, Puerto Rico, and the
Caribbean region, General Technical Report SRS-GTR-193, Asheville, NC,
USDA-Forest Service, Southern Research Station, 193, 1–47,
https://doi.org/10.2737/SRS-GTR-193, 2014.
a,
b
Jeong, D. I., St-Hilaire, A., Ouarda, T., and Gachon, P.: A multivariate
multi-site statistical downscaling model for daily maximum and minimum
temperatures, Clim. Res., 54, 129–148, 2012a.
a,
b,
c,
d
Jeong, D. I., St-Hilaire, A., Ouarda, T. B., and Gachon, P.: Multisite
statistical downscaling model for daily precipitation combined by
multivariate multiple linear regression and stochastic weather generator,
Climatic Change, 114, 567–591, 2012b.
a,
b,
c
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, R
J., 5, 144–161,
2013.
a,
b,
c,
d
Khalyani, A. H., Gould, W. A., Harmsen, E., Terando, A., Quinones, M., and
Collazo, J. A.: Climate change implications for tropical islands:
Interpolating and interpreting statistically downscaled GCM projections
for management and planning, J. Appl. Meteorol. Clim.,
55, 265–282, 2016. a
Lafon, T., Dadson, S., Buys, G., and Prudhomme, C.: Bias correction of daily
precipitation simulated by a regional climate model: a comparison of methods,
Int. J. Climatol., 33, 1367–1381, 2013. a
Lintner, B. R., Biasutti, M., Diffenbaugh, N. S., Lee, J.-E., Niznik, M. J.,
and Findell, K. L.: Amplification of wet and dry month occurrence over
tropical land regions in response to global warming, J. Geophys.
Res.-Atmos., 117, D11106,
https://doi.org/10.1029/2012JD017499, 2012.
a
Lund, R., Hurd, H., Bloomfield, P., and Smith, R.: Climatological time series
with periodic correlation, J. Climate, 8, 2787–2809, 1995. a
Magrin, G., Gay Garcia, C., Cruz Choque, D., Gimenez-Sal, J., Moreno, A., Nagy,
G., Nobre, C., and Villamizar, A.: Climate Change and Climate Variability in
the Latin American Region, in: American Geophysical Union Spring Meeting
Abstracts,
https://ui.adsabs.harvard.edu/abs/2007AGUSM.U33B..02M (last access: 23 January 2023), 2007.
a,
b
Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting
the inflation issue, J. Climate, 26, 2137–2143, 2013. a
Maraun, D.: Bias correcting climate change simulations – A critical review,
Current Climate Change Reports, 2, 211–220, 2016. a
Mattingly, K. S., Seymour, L., and Miller, P. W.: Estimates of Extreme
Precipitation Frequency Derived from Spatially Dense Rain Gauge Observations:
A Case Study of Two Urban Areas in the Colorado Front Range Region, Ann.
Am. Assoc. Geogr., 107, 1499–1518, 2017. a
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell,
J. F., Stouffer, R. J., and Taylor, K. E.: The WCRP CMIP3 multimodel
dataset: A new era in climate change research, B. Am.
Meteorol. Soc., 88, 1383–1394, 2007. a
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu,
G., Dixon, K., Giorgetta, M. A., Greene, A. M., and Hawkins, E. D.: Decadal
prediction: can it be skillful?, B. Am. Meteorol.
Soc., 90, 1467–1486, 2009. a
Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C., Frieler, K., Knutti,
R., Frame, D. J., and Allen, M. R.: Greenhouse-gas emission targets for
limiting global warming to 2
∘C, Nature, 458, 1158–1162, 2009. a
Menne, M. J., Durre, I., Korzeniewski, B., McNeill, S., Thomas, K., Yin, X., Anthony, S., Ray, R., Vose, R. S., Gleason, B. E., and Houston, T. G.: Global Historical Climatology Network – Daily (GHCN-Daily), Version 3. [Puerto Rico], NOAA National Climatic Data Center [data set],
https://doi.org/10.7289/V5D21VHZ, 2012a.
a
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/JTECH-D-11-00103.1, 2012b.
a
Müller, C., Cramer, W., Hare, W. L., and Lotze-Campen, H.: Climate change
risks for African agriculture, P. Natl. Acad. Sci. USA, 108, 4313–4315,
https://doi.org/10.1073/pnas.1015078108, 2011.
a
NCEI: National Centers for Environmental Information's Daily Observational Data
Map, Version 2.2.0,
https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily,
last access: 1 December 2018. a
Park, J., Kang, M. S., and Song, I.: Bias correction of RCP-based future
extreme precipitation using a quantile mapping method; for 20-weather
stations of South Korea, Journal of the Korean Society of Agricultural
Engineers, 54, 133–142, 2012. a
Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K., and Jarvis, A.:
Implications of regional improvement in global climate models for
agricultural impact research, Environ. Res. Lett., 8, 024018,
https://doi.org/10.1088/1748-9326/8/2/024018,
2013.
a
Ramseyer, C., Miller, P., and Mote, T. L.: Statistical Downscaling of CMIP5
data to predict future dry day frequency in the El Yunque National
Forest, in: American Geophysical Union Fall Meeting Abstracts, vol.
2018, A21L–2904,
https://ui.adsabs.harvard.edu/abs/2018AGUFM.A21L2904R (last access: 23 January 2023), 2018.
a,
b
Ramseyer, C. A. and Mote, T. L.: Atmospheric controls on Puerto Rico
precipitation using artificial neural networks, Clim. Dynam., 47,
2515–2526, 2016.
a,
b
Ramseyer, C. A. and Mote, T. L.: Analysing regional climate forcing on
historical precipitation variability in Northeast Puerto Rico, Int.
J. Climatol., 38, e224–e236, 2018.
a,
b
Ramseyer, C. A., Miller, P. W., and Mote, T. L.: Future precipitation
variability during the early rainfall season in the El Yunque National
Forest, Sci. Total Environ., 661, 326–336, 2019.
a,
b
Satterthwaite, D.: Cities' contribution to global warming: notes on the
allocation of greenhouse gas emissions, Environ. Urban., 20,
539–549, 2008. a
Stennett-Brown, R. K., Jones, J. J., Stephenson, T. S., and Taylor, M. A.:
Future Caribbean temperature and rainfall extremes from statistical
downscaling, Int. J. Climatol., 37, 4828–4845, 2017. a
Taylor, K. E., Balaji, V., Hankin, S., Juckes, M., Lawrence, B., and Pascoe,
S.: CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies, in:
Program for Climate Model Diagnosis and Intercomparison,
http://pcmdi.github.io/mips/cmip5/docs/cmip5_data_reference_syntax.pdf (last access: 23 January 2023), 2011.
a,
b
Taylor, M. A., Enfield, D. B., and Chen, A. A.: Influence of the tropical
Atlantic versus the tropical Pacific on Caribbean rainfall, J.
Geophys. Res.-Oceans, 107, 3127,
https://doi.org/10.1029/2001JC001097, 2002.
a,
b
Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B.: Technical Note: Bias correcting
climate model simulated daily temperature extremes with quantile mapping, Hydrol. Earth Syst.
Sci., 16, 3309–3314,
https://doi.org/10.5194/hess-16-3309-2012, 2012.
a,
b,
c,
d
Van Beusekom, A. E., Gould, W. A., Terando, A. J., and Collazo, J. A.: Climate
change and water resources in a tropical island system: propagation of
uncertainty from statistically downscaled climate models to hydrologic
models, Int. J. Climatol., 36, 3370–3383, 2016. a
Washington, B. and Seymour, L.: An Adapted vector Autoregressive
Expectation-Maximization Imputation Algorithm for Climate Data Networks,
Wires Comput. Stat., 12, e1494,
https://doi.org/10.1002/wics.1494,
2019.
a
Washington, B., Seymour, L., Lund, R., and Willett, K.: Simulation of
temperature series and small networks from data, Int. J.
Climatol., 39, 5104–5123,
2019.
a,
b
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York,
http://ggplot2.org (last access: 22 January 2023), 2016.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t,
u,
v,
w,
x,
y,
z,
aa,
ab
Winkler, J. A., Palutikof, J. P., Andresen, J. A., and Goodess, C. M.: The
simulation of daily temperature time series from GCM output. Part II:
Sensitivity analysis of an empirical transfer function methodology, J.
Climate, 10, 2514–2532, 1997. a
Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: Long-range
experimental hydrologic forecasting for the eastern United States, J.
Geophys. Res.-Atmos., 107, 4429,
https://doi.org/10.1029/2001JD000659, 2002.
a,
b
Yang, C., Chandler, R. E., Isham, V. S., and Wheater, H. S.: Spatial-temporal
rainfall simulation using generalized linear models, Water Resour.
Res., 41, W11415,
https://doi.org/10.1029/2004WR003739, 2005.
a