Articles | Volume 9, issue 1
https://doi.org/10.5194/ascmo-9-1-2023
https://doi.org/10.5194/ascmo-9-1-2023
02 Feb 2023
 | 02 Feb 2023

Modeling general circulation model bias via a combination of localized regression and quantile mapping methods

Benjamin James Washington, Lynne Seymour, and Thomas L. Mote

Related authors

Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019,https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
A meandering polar jet caused the development of a Saharan cyclone and the transport of dust toward Greenland
Diana Francis, Clare Eayrs, Jean-Pierre Chaboureau, Thomas Mote, and David M. Holland
Adv. Sci. Res., 16, 49–56, https://doi.org/10.5194/asr-16-49-2019,https://doi.org/10.5194/asr-16-49-2019, 2019
Short summary
Characterizing severe weather potential in synoptically weakly forced thunderstorm environments
Paul W. Miller and Thomas L. Mote
Nat. Hazards Earth Syst. Sci., 18, 1261–1277, https://doi.org/10.5194/nhess-18-1261-2018,https://doi.org/10.5194/nhess-18-1261-2018, 2018
Short summary
Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy
S. Jeffrey Underwood, Michael D. Schultz, Metteo Berti, Carlo Gregoretti, Alessandro Simoni, Thomas L. Mote, and Anthony M. Saylor
Nat. Hazards Earth Syst. Sci., 16, 509–528, https://doi.org/10.5194/nhess-16-509-2016,https://doi.org/10.5194/nhess-16-509-2016, 2016
Short summary

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Ananthakrishnan, R., Bell, G., Cinquini, L., Crichton, D., Danvil, S., Drach, B., Fiore, S., Gonzalez, E., Harney, J. F., and Mattmann, C.: The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data, Tech. rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Center for Computational Sciences, https://doi.org/10.1016/j.future.2013.07.002, 2013. a
Angeles, M. E., Gonzalez, J. E., Erickson III, D. J., and Hernández, J. L.: Predictions of future climate change in the Caribbean region using global general circulation models, Int. J. Climatol., 27, 555–569, 2007. a
Angeles, M. E., González, J. E., Ramírez-Beltrán, N. D., Tepley, C. A., and Comarazamy, D. E.: Origins of the Caribbean rainfall bimodal behavior, J. Geophys. Res.-Atmos., 115, D11106, https://doi.org/10.1029/2009JD012990, 2010. a, b
Ben Alaya, M. A., Chebana, F., and Ouarda, T.: Probabilistic Gaussian copula regression model for multisite and multivariable downscaling, J. Climate, 27, 3331–3347, 2014. a
Bhardwaj, A., Misra, V., Mishra, A., Wootten, A., Boyles, R., Bowden, J., and Terando, A. J.: Downscaling future climate change projections over Puerto Rico using a non-hydrostatic atmospheric model, Climatic Change, 147, 133–147, 2018. a
Download
Short summary
We develop new methodology to statistically model known bias in general atmospheric circulation models. We focus on Puerto Rico specifically because of other important ongoing and long-term ecological and environmental research taking place there. Our methods work even in the presence of Puerto Rico's broken climate record. With our methods, we find that climate change will not only favor a warmer and wetter climate in Puerto Rico, but also increase the frequency of extreme rainfall events.