Articles | Volume 9, issue 2
https://doi.org/10.5194/ascmo-9-83-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-9-83-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Institute for Atmospheric and Climate Science,
ETH Zurich, 8092 Zurich, Switzerland
Erich M. Fischer
Institute for Atmospheric and Climate Science,
ETH Zurich, 8092 Zurich, Switzerland
Related authors
No articles found.
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-525, https://doi.org/10.5194/egusphere-2025-525, 2025
Short summary
Short summary
Weather extremes have become more frequent due to climate change. It is therefore crucial to understand them, but since they are rarer than average weather, they are challenging to study. Ensemble Boosting (EB) is a tool that generates extreme climate model events efficiently, but without directly estimating their probability. Here, we present a method to recover these probabilities for a global climate model. EB can thus now be used to find extremes with meaningful statistical information.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Fabian von Trentini, Emma E. Aalbers, Erich M. Fischer, and Ralf Ludwig
Earth Syst. Dynam., 11, 1013–1031, https://doi.org/10.5194/esd-11-1013-2020, https://doi.org/10.5194/esd-11-1013-2020, 2020
Short summary
Short summary
We compare the inter-annual variability of three single-model initial-condition large ensembles (SMILEs), downscaled with three regional climate models over Europe for seasonal temperature and precipitation, the number of heatwaves, and maximum length of dry periods. They all show good consistency with observational data. The magnitude of variability and the future development are similar in many cases. In general, variability increases for summer indicators and decreases for winter indicators.
Cited articles
Akhtar, R.: Introduction: Extreme Weather Events and Human Health: A Global
Perspective, in: Extreme Weather Events and Human Health, edited by Akhtar,
R., Springer International Publishing, Cham, 3–11,
https://doi.org/10.1007/978-3-030-23773-8_1, 2020. a
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and
García-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature
Record Map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224,
2011. a
Bartusek, S., Kornhuber, K., and Ting, M.: 2021 North American heatwave
amplified by climate change-driven nonlinear interactions, Nat. Clim.
Change, 12, 1143–1150, https://doi.org/10.1038/s41558-022-01520-4, 2022. a, b
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., and Makowski, D.:
Impact of extreme weather conditions on European crop production in 2018,
Philos. T. R. Soc., 375,
20190510, https://doi.org/10.1098/rstb.2019.0510, 2020. a
Bercos‐Hickey, E., O’Brien, T. A., Wehner, M. F., Zhang, L., Patricola,
C. M., Huang, H., and Risser, M. D.: Anthropogenic Contributions to the 2021
Pacific Northwest Heatwave, Geophys. Res. Lett., 49, e2022GL099396,
https://doi.org/10.1029/2022GL099396, 2022. a
Bieli, M., Pfahl, S., and Wernli, H.: A lagrangian investigation of hot and
cold temperature extremes in europe, Q. J. Roy.
Meteor. Soc., 141, 98–108, https://doi.org/10.1002/qj.2339, 2015. a
Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6
next generation archive: technical documentation, Tech. Rep., ETH Zurich,
Institute for Atmospheric and Climate Science, Zurich, Switzerland, Zenodo,
https://doi.org/10.5281/zenodo.3734128, 2020. a
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I.: STL: A
Seasonal-Trend Decomposition Procedure Based on Loess, J. Off.
Stat., 6, 3–73, 1990. a
Coles, S.: An introduction to statistical modeling of extreme values,
Springer series in statistics, 3rd print edn., Springer, London, ISBN 978-1-85233-459-8, https://doi.org/10.1007/978-1-4471-3675-0,
2001. a
Cooley, D.: Return Periods and Return Levels Under Climate Change, in:
Extremes in a Changing Climate: Detection, Analysis and Uncertainty, edited
by: AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorooshian,
S., chap. 4, Springer Netherlands, Dordrecht, Netherlands, 97–114,
https://doi.org/10.1007/978-94-007-4479-0, 2013. a
Cooley, D., Hunter, B. D., and Smith, R. L.: Univariate and Multivariate
Extremes for the Environmental Sciences, in: Handbook of Environmental and
Ecological Statistics, edited by: Gelfand, A., Fuentes, M., Hoeting, J. A.,
and Smith, R. L., chap. 8, Chapman and Hall/CRC,
Taylor & Francis, Boca Raton, 153–180, ISBN 9781315152509, https://doi.org/10.1201/9781315152509-9, 2019. a, b
Deb, P., Moradkhani, H., Abbaszadeh, P., Kiem, A. S., Engström, J.,
Keellings, D., and Sharma, A.: Causes of the Widespread 2019–2020
Australian Bushfire Season, Earth's Future, 8, e2020EF001671, https://doi.org/10.1029/2020EF001671,
2020. a
de Haan, L. and Ferreira, A.: Extreme Value Theory: An Introduction, Springer
Science & Business Media, New York, NY, United States, ISBN 978-0-387-29959-4, https://doi.org/10.1007/0-387-34471-3, 2006. a
Della-Marta, P. M., Haylock, M. R., Luterbacher, J., and Wanner, H.: Doubled
length of western European summer heat waves since 1880, J.
Geophys. Res., 112, D15103, https://doi.org/10.1029/2007JD008510,
2007a. a
Della-Marta, P. M., Luterbacher, J., von Weissenfluh, H., Xoplaki, E., Brunet,
M., and Wanner, H.: Summer heat waves over western Europe 1880–2003, their
relationship to large-scale forcings and predictability, Clim. Dynam.,
29, 251–275, https://doi.org/10.1007/s00382-007-0233-1, 2007b. a, b, c
Deser, C., Terray, L., and Phillips, A. S.: Forced and internal components of
winter air temperature trends over North America during the past 50 years:
Mechanisms and implications, J. Climate, 29, 2237–2258,
https://doi.org/10.1175/JCLI-D-15-0304.1, 2016. a
Detring, C., Müller, A., Schielicke, L., Névir, P., and Rust, H. W.: Occurrence and transition probabilities of omega and high-over-low blocking in the Euro-Atlantic region, Weather Clim. Dynam., 2, 927–952, https://doi.org/10.5194/wcd-2-927-2021, 2021. a
Domeisen, D. I. V., Eltahir, E. A. B., Fischer, E. M., Knutti, R.,
Perkins-Kirkpatrick, S. E., Schär, C., Seneviratne, S. I., Weisheimer,
A., and Wernli, H.: Prediction and projection of heatwaves, Nature Reviews
Earth & Environment, 4, 36–50, https://doi.org/10.1038/s43017-022-00371-z, 2022. a
Eastoe, E. F. and Tawn, J. A.: Modelling Non-Stationary Extremes with
Application to Surface Level Ozone, J. R. Stat. Soc.
C-Appl., 58, 25–45,
https://doi.org/10.1111/j.1467-9876.2008.00638.x, 2009. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Feudale, L. and Shukla, J.: Influence of sea surface temperature on the
European heat wave of 2003 summer. Part I: an observational study, Climate
Dynamics, 36, 1691–1703, https://doi.org/10.1007/s00382-010-0788-0, 2011. a
Fischer, E. M. and Schär, C.: Future changes in daily summer temperature
variability: driving processes and role for temperature extremes, Clim.
Dynam., 33, 917–935, https://doi.org/10.1007/s00382-008-0473-8, 2009. a
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D., and
Schär, C.: Soil moisture-atmosphere interactions during the 2003
European summer heat wave, J. Climate, 20, 5081–5099,
https://doi.org/10.1175/JCLI4288.1, 2007. a, b
Fischer, E. M., Sippel, S., and Knutti, R.: Increasing probability of
record-shattering climate extremes, Nat. Clim. Change, 11, 689–695,
https://doi.org/10.1038/s41558-021-01092-9, 2021. a, b
Fischer, P. H., Brunekreef, B., and Lebret, E.: Air pollution related deaths
during the 2003 heat wave in the Netherlands, Atmos. Environ., 38,
1083–1085, https://doi.org/10.1016/j.atmosenv.2003.11.010, 2004. a
Friederichs, P.: Statistical downscaling of extreme precipitation events using
extreme value theory, Extremes, 13, 109–132,
https://doi.org/10.1007/s10687-010-0107-5, 2010. a
Friederichs, P., Göber, M., Bentzien, S., Lenz, A., and Krampitz, R.: A
probabilistic analysis of wind gusts using extreme value statistics,
Meteorol. Z., 18, 615–629, https://doi.org/10.1127/0941-2948/2009/0413,
2009. a
Gabda, D., Tawn, J., and Brown, S.: A step towards efficient inference for
trends in UK extreme temperatures through distributional linkage between
observations and climate model data, Nat. Hazards, 98, 1135–1154,
https://doi.org/10.1007/s11069-018-3504-8, 2019. a
Gessner, C., Fischer, E. M., Beyerle, U., and Knutti, R.: Very rare heat
extremes: quantifying and understanding using ensemble re-initialization,
J. Climate, 34, 6619–6634, https://doi.org/10.1175/JCLI-D-20-0916.1, 2021. a
Ghil, M., Yiou, P., Hallegatte, S., Malamud, B. D., Naveau, P., Soloviev, A., Friederichs, P., Keilis-Borok, V., Kondrashov, D., Kossobokov, V., Mestre, O., Nicolis, C., Rust, H. W., Shebalin, P., Vrac, M., Witt, A., and Zaliapin, I.: Extreme events: dynamics, statistics and prediction, Nonlin. Processes Geophys., 18, 295–350, https://doi.org/10.5194/npg-18-295-2011, 2011. a
Gilleland, E.: Bootstrap Methods for Statistical Inference. Part I:
Comparative Forecast Verification for Continuous Variables, J.
Atmos. Ocean. Tech., 37, 2117–2134,
https://doi.org/10.1175/JTECH-D-20-0069.1, 2020. a
Gilleland, E. and Katz, R. W.: ExtRemes 2.0: An extreme value analysis package
in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08,
2016. a
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical
Learning, Springer Series in Statistics, Springer New York, New York, NY,
https://doi.org/10.1007/b94608, 2009. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., and
Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation
patterns to extreme temperature trends, Nature, 522, 465–469,
https://doi.org/10.1038/nature14550, 2015. a
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E., and Raymond, C.: A Review
of Recent Advances in Research on Extreme Heat Events, Current Climate
Change Reports, 2, 242–259, https://doi.org/10.1007/s40641-016-0042-x, 2016. a
Huang, W. K., Stein, M. L., McInerney, D. J., Sun, S., and Moyer, E. J.: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions, Adv. Stat. Clim. Meteorol. Oceanogr., 2, 79–103, https://doi.org/10.5194/ascmo-2-79-2016, 2016. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The community earth system model: A framework for
collaborative research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021. a
Jahn, M.: Economics of extreme weather events: Terminology and regional impact
models, Weather and Climate Extremes, 10, 29–39,
https://doi.org/10.1016/j.wace.2015.08.005, 2015. a
Jézéquel, A., Yiou, P., and Radanovics, S.: Role of circulation in
European heatwaves using flow analogues, Clim. Dynam., 50, 1145–1159,
https://doi.org/10.1007/s00382-017-3667-0, 2018. a, b, c, d
Katz, R. W.: Statistical Methods for Nonstationary Extremes, in: Extremes in
a Changing Climate: Detection, Analysis and Uncertainty, edited by:
AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorooshian, S.,
chap. 2, Springer Netherlands, Dordrecht, Netherlands, 15–37,
https://doi.org/10.1007/978-94-007-4479-0, 2013. a
Kew, S. f., Philip, S. Y., Jan van Oldenborgh, G., van der Schrier, G., Otto,
F. E. L., and Vautard, R.: The Exceptional Summer Heat Wave in Southern
Europe 2017, B. Am. Meteorol. Soc., 100, S49–S53,
https://doi.org/10.1175/BAMS-D-18-0109.1, 2019. a
Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma,
M. J.: On the Nature of Soil Moisture in Land Surface Models, J.
Climate, 22, 4322–4335, https://doi.org/10.1175/2009JCLI2832.1, 2009. a
Koutsoyiannis, D. and Montanari, A.: Negligent killing of scientific concepts:
the stationarity case, Hydrolog. Sci. J., 60, 1174–1183,
https://doi.org/10.1080/02626667.2014.959959, 2015. a
Kröner, N., Kotlarski, S., Fischer, E., Lüthi, D., Zubler, E., and
Schär, C.: Separating climate change signals into thermodynamic,
lapse-rate and circulation effects: theory and application to the European
summer climate, Clim. Dynam., 48, 3425–3440,
https://doi.org/10.1007/s00382-016-3276-3, 2017. a
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson,
S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K.,
Bonan, G. B., and Slater, A. G.: Parameterization improvements and
functional and structural advances in Version 4 of the Community Land Model,
J. Adv. Model. Earth Sy., 3, M03001,
https://doi.org/10.1029/2011MS00045, 2011. a
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020. a
Lorenz, R., Stalhandske, Z., and Fischer, E. M.: Detection of a Climate Change
Signal in Extreme Heat, Heat Stress, and Cold in Europe From Observations,
Geophys. Res. Lett., 46, 8363–8374, https://doi.org/10.1029/2019GL082062,
2019. a
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and
Vilà-Guerau de Arellano, J.: Mega-heatwave temperatures due to
combined soil desiccation and atmospheric heat accumulation, Nat.
Geosci., 7, 345–349, https://doi.org/10.1038/ngeo2141, 2014. a, b
Mo, R., Lin, H., and Vitart, F.: An anomalous warm-season trans-Pacific
atmospheric river linked to the 2021 western North America heatwave,
Communications Earth & Environment, 3, 127,
https://doi.org/10.1038/s43247-022-00459-w, 2022. a
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019. a
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
Naveau, P., Hannart, A., and Ribes, A.: Statistical methods for extreme event
attribution in climate science, Annu. Rev. Stat.
Appl., 7, 89–110, https://doi.org/10.1146/annurev-statistics-031219-041314,
2020. a
Neal, E., Huang, C. S. Y., and Nakamura, N.: The 2021 Pacific Northwest Heat
Wave and Associated Blocking: Meteorology and the Role of an Upstream Cyclone
as a Diabatic Source of Wave Activity, Geophys. Res. Lett., 49, e2021GL097699,
https://doi.org/10.1029/2021GL097699, 2022. a
Neale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S.,
Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J.-F.,
Marsh, D., Mills, M., Smith, A. K., Tilmes, S., Vitt, F., Morrison, H.,
Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, S. J.,
Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community
Atmosphere Model (CAM 5.0), Tech. Rep. November, National Center For
Atmospheric Research, Boulder, Colorado, United States,
https://doi.org/10.5065/wgtk-4g06, 2012. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Overland, J. E.: Causes of the Record-Breaking Pacific Northwest Heatwave,
Late June 2021, Atmosphere, 12, 1434, https://doi.org/10.3390/atmos12111434, 2021. a
Parente, J., Pereira, M., Amraoui, M., and Fischer, E.: Heat waves in
Portugal: Current regime, changes in future climate and impacts on extreme
wildfires, Sci. Total Environ., 631–632, 534–549,
https://doi.org/10.1016/j.scitotenv.2018.03.044, 2018. a
Perkins, S. E.: A review on the scientific understanding of heatwaves-Their
measurement, driving mechanisms, and changes at the global scale,
Atmos. Res., 164–165, 242–267,
https://doi.org/10.1016/j.atmosres.2015.05.014, 2015. a
Pfahl, S. and Wernli, H.: Quantifying the relevance of atmospheric blocking
for co-located temperature extremes in the Northern Hemisphere on (sub-)daily
time scales, Geophys. Res. Lett., 39, L12807,
https://doi.org/10.1029/2012GL052261, 2012. a, b
Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: A protocol for probabilistic extreme event attribution analyses, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, 2020. a, b
Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Anslow, F. S., Seneviratne, S. I., Vautard, R., Coumou, D., Ebi, K. L., Arrighi, J., Singh, R., van Aalst, M., Pereira Marghidan, C., Wehner, M., Yang, W., Li, S., Schumacher, D. L., Hauser, M., Bonnet, R., Luu, L. N., Lehner, F., Gillett, N., Tradowsky, J. S., Vecchi, G. A., Rodell, C., Stull, R. B., Howard, R., and Otto, F. E. L.: Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021, Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, 2022. a, b, c, d
Rácz, Z. and Smith, R. K.: The dynamics of heat lows, Q. J.
Roy. Meteor. Soc., 125, 225–252,
https://doi.org/10.1002/qj.49712555313, 1999. a
R Core Team: R: A Language and Environment for Statistical Computing,
https://www.r-project.org/ (last access: 9 July 2023), 2022. a
Rex, D. F.: Blocking Action in the Middle Troposphere and its Effect upon
Regional Climate, Tellus, 2, 275–301, https://doi.org/10.3402/tellusa.v2i4.8603,
1950. a
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., and Zscheischler, J.: Risk of crop failure due to compound dry and hot extremes estimated with nested copulas, Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, 2020. a
Risser, M. D. and Wehner, M. F.: Attributable Human-Induced Changes in the
Likelihood and Magnitude of the Observed Extreme Precipitation during
Hurricane Harvey, Geophys. Res. Lett., 44, 12457–12464,
https://doi.org/10.1002/2017GL075888, 2017. a
Robin, Y. and Ribes, A.: Nonstationary extreme value analysis for event attribution combining climate models and observations, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020, 2020. a, b
Russell, B. T., Cooley, D. S., Porter, W. C., Reich, B. J., and Heald, C. L.:
Data mining to investigate the meteorological drivers for extreme ground
level ozone events, Ann. Appl. Stat., 10, 1673–1698,
https://doi.org/10.1214/16-AOAS954, 2016. a
Schaller, N., Sillmann, J., Anstey, J., Fischer, E. M., Grams, C. M., and
Russo, S.: Influence of blocking on Northern European and Western Russian
heatwaves in large climate model ensembles, Environ. Res. Lett.,
13, 054015, https://doi.org/10.1088/1748-9326/aaba55, 2018. a
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C.,
Liniger, M. A., and Appenzeller, C.: The role of increasing temperature
variability in European summer heatwaves, Nature, 427, 332–336,
https://doi.org/10.1038/nature02300, 2004. a
Schumacher, D. L., Hauser, M., and Seneviratne, S. I.: Drivers and Mechanisms
of the 2021 Pacific Northwest Heatwave, Earth's Future, 10, 9156,
https://doi.org/10.1029/2022EF002967, 2022. a, b, c, d
Seneviratne, S. I. and Hauser, M.: Regional Climate Sensitivity of Climate
Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles, Earth's Future, 8,
e2019EF001474, https://doi.org/10.1029/2019EF001474, 2020. a, b, c
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture-climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. a
Serinaldi, F. and Kilsby, C. G.: Stationarity is undead: Uncertainty dominates
the distribution of extremes, Adv. Water Resour., 77, 17–36,
https://doi.org/10.1016/j.advwatres.2014.12.013, 2015. a
Shaposhnikov, D., Revich, B., Bellander, T., Bedada, G. B., Bottai, M.,
Kharkova, T., Kvasha, E., Lezina, E., Lind, T., Semutnikova, E., and
Pershagen, G.: Mortality related to air pollution with the Moscow heat wave
and wildfire of 2010, Epidemiology, 25, 359–364,
https://doi.org/10.1097/EDE.0000000000000090, 2014. a
Shepherd, T. G.: A Common Framework for Approaches to Extreme Event
Attribution, Current Climate Change Reports, 2, 28–38,
https://doi.org/10.1007/s40641-016-0033-y, 2016. a
Sippel, S., Meinshausen, N., Merrifield, A., Lehner, F., Pendergrass, A. G.,
Fischer, E., and Knutti, R.: Uncovering the forced climate response from a
single ensemble member using statistical learning, J. Climate, 32,
5677–5699, https://doi.org/10.1175/jcli-d-18-0882.1, 2019. a
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) reference
manual: Ocean component of the Community Climate System Model (CCSM) and
Community Earth System Model (CESM), Tech. Rep., National Center for
Atmospheric Research NCAR, Boulder, Colorado, USA,
http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-000-954 (last access: 9 July 2023),
2010. a
Stillman, J. H.: Heat Waves, the New Normal: Summertime Temperature Extremes
Will Impact Animals, Ecosystems, and Human Communities, Physiology, 34,
86–100, https://doi.org/10.1152/physiol.00040.2018, 2019. a
Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the
European heatwave of 2003, Nature, 432, 610–614, https://doi.org/10.1038/nature03089,
2004. a
Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J., van
Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and
Zwiers, F. W.: Attribution of extreme weather and climate‐related events,
WIREs Clim. Change, 7, 23–41, https://doi.org/10.1002/wcc.380, 2016. a
Suarez-Gutierrez, L., Müller, W. A., Li, C., and Marotzke, J.: Dynamical
and thermodynamical drivers of variability in European summer heat extremes,
Clim. Dynam., 54, 4351–4366, https://doi.org/10.1007/s00382-020-05233-2, 2020. a, b
Sutton, R. T., Dong, B., and Gregory, J. M.: Land/sea warming ratio in
response to climate change: IPCC AR4 model results and comparison with
observations, Geophys. Res. Lett., 34, L02701,
https://doi.org/10.1029/2006GL028164, 2007. a
Terray, L.: A dynamical adjustment perspective on extreme event attribution, Weather Clim. Dynam., 2, 971–989, https://doi.org/10.5194/wcd-2-971-2021, 2021. a, b
Toda, M., Watanabe, M., and Yoshimori, M.: An energy budget framework to
understand mechanisms of land–ocean warming contrast induced by increasing
greenhouse gases Part I: Near-equilibrium state, J. Climate, 34,
9279–9292, https://doi.org/10.1175/JCLI-D-21-0302.1, 2021. a
Vautard, R., Yiou, P., Otto, F., Stott, P., Christidis, N., Van Oldenborgh,
G. J., and Schaller, N.: Attribution of human-induced dynamical and
thermodynamical contributions in extreme weather events, Environ.
Res. Lett., 11, 114009, https://doi.org/10.1088/1748-9326/11/11/114009, 2016. a
Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp,
F., van Oldenborgh, G. J., Otto, F. E., Ribes, A., Robin, Y., Schneider, M.,
Soubeyroux, J.-M., Stott, P., Seneviratne, S. I., Vogel, M. M., and Wehner,
M.: Human contribution to the record-breaking June and July 2019 heat waves
in Western Europe, Environ. Res. Lett., 15, 094077,
https://doi.org/10.1088/1748-9326/aba3d4, 2020. a, b
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R.,
Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R.,
Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H., Lavigne, E., Correa, P. M.,
Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H.,
Indermitte, E., Jaakkola, J. J., Ryti, N., Pascal, M., Schneider, A.,
Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka,
A., Michelozzi, P., De’Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H.,
Valencia, C. D. L. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S.,
Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J.,
Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C.,
Forsberg, B., Ragettli, M. S., Guo, Y. L., Chen, B. Y., Li, S., Armstrong,
B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V.,
Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The
burden of heat-related mortality attributable to recent human-induced climate
change, Nat. Clim. Change, 11, 492–500,
https://doi.org/10.1038/s41558-021-01058-x, 2021. a
Vignotto, E., Sippel, S., Lehner, F., and Fischer, E.: Towards dynamical
adjustment of the full temperature distribution, in: Proceedings of the 10th
International Conference on Climate Informatics, online, 22–25 September 2020, ACM, New York,
NY, USA, 52–59, https://doi.org/10.1145/3429309.3429317, 2020. a
Vogel, M. M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., van den Hurk,
B. J., and Seneviratne, S. I.: Regional amplification of projected changes
in extreme temperatures strongly controlled by soil moisture-temperature
feedbacks, Geophys. Res. Lett., 44, 1511–1519,
https://doi.org/10.1002/2016GL071235, 2017.
a
WCRP: WCRP Coupled Model Intercomparison Project (Phase 6), WCRP [data set], https://esgf-node.llnl.gov/projects/cmip6/, last access: 11 July 2023. a
Wehner, M. F.: Characterization of long period return values of extreme daily
temperature and precipitation in the CMIP6 models: Part 2, projections of
future change, Weather and Climate Extremes, 30, 100284,
https://doi.org/10.1016/j.wace.2020.100284, 2020. a, b
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S. I.:
Identifying Key Driving Processes of Major Recent Heat Waves, J.
Geophys. Res.-Atmos., 124, 11746–11765,
https://doi.org/10.1029/2019JD030635, 2019. a
Wehrli, K., Luo, F., Hauser, M., Shiogama, H., Tokuda, D., Kim, H., Coumou, D., May, W., Le Sager, P., Selten, F., Martius, O., Vautard, R., and Seneviratne, S. I.: The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes, Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, 2022. a
White, R. H., Anderson, S., Booth, J. F., Braich, G., Draeger, C., Fei, C.,
Harley, C. D. G., Henderson, S. B., Jakob, M., Lau, C.-A., Mareshet Admasu,
L., Narinesingh, V., Rodell, C., Roocroft, E., Weinberger, K. R., and West,
G.: The unprecedented Pacific Northwest heatwave of June 2021, Nat.
Commun., 14, 727, https://doi.org/10.1038/s41467-023-36289-3, 2023. a
Yiou, P.: AnaWEGE: a weather generator based on analogues of atmospheric circulation, Geosci. Model Dev., 7, 531–543, https://doi.org/10.5194/gmd-7-531-2014, 2014. a
Yiou, P., Jézéquel, A., Naveau, P., Otto, F. E. L., Vautard, R., and Vrac, M.: A statistical framework for conditional extreme event attribution, Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, 2017. a
Youngman, B. D.: evgam : An R Package for Generalized Additive Extreme Value
Models, J. Stat. Softw., 103, 1–26, https://doi.org/10.18637/jss.v103.i03,
2022. a
Zeder, J. and Fischer, E.: Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change (Dataset), ETH Library [data set], https://doi.org/10.3929/ethz-b-000615056, 2023. a
Zschenderlein, P., Fink, A. H., Pfahl, S., and Wernli, H.: Processes
determining heat waves across different European climates, Q. J. Roy. Meteor. Soc., 145, 2973–2989, https://doi.org/10.1002/qj.3599,
2019. a
Zwiers, F. W., Zhang, X., and Feng, Y.: Anthropogenic Influence on Long Return
Period Daily Temperature Extremes at Regional Scales, J. Climate,
24, 881–892, https://doi.org/10.1175/2010JCLI3908.1, 2011. a
Short summary
The intensities of recent heatwave events, such as the record-breaking heatwave in early June 2021 in the Pacific Northwest area, are substantially altered by climate change. We further quantify the contribution of the local weather situation and the land surface conditions with a statistical model suited for extreme data. Based on this method, we can answer
what ifquestions, such as estimating the change in the 2021 heatwave temperature if it happened in a world without climate change.
The intensities of recent heatwave events, such as the record-breaking heatwave in early June...