Articles | Volume 2, issue 2
https://doi.org/10.5194/ascmo-2-105-2016
https://doi.org/10.5194/ascmo-2-105-2016
02 Aug 2016
 | 02 Aug 2016

A space–time statistical climate model for hurricane intensification in the North Atlantic basin

Erik Fraza, James B. Elsner, and Thomas H. Jagger

Related authors

Extracting weather information from a plantation document
Gregory Burris, Jane Washburn, Omar Lasheen, Sophia Dorribo, James B. Elsner, and Ronald E. Doel
Clim. Past, 15, 477–492, https://doi.org/10.5194/cp-15-477-2019,https://doi.org/10.5194/cp-15-477-2019, 2019
Short summary
Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 3 – Identification of optimal meteorological tags
E. A. Smith, H. W.-Y. Leung, J. B. Elsner, A. V. Mehta, G. J. Tripoli, D. Casella, S. Dietrich, A. Mugnai, G. Panegrossi, and P. Sanò
Nat. Hazards Earth Syst. Sci., 13, 1185–1208, https://doi.org/10.5194/nhess-13-1185-2013,https://doi.org/10.5194/nhess-13-1185-2013, 2013

Related subject area

Climate research
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024,https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Changes in the distribution of annual maximum temperatures in Europe
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023,https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary
Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios
Fabian Lehner, Imran Nadeem, and Herbert Formayer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 29–44, https://doi.org/10.5194/ascmo-9-29-2023,https://doi.org/10.5194/ascmo-9-29-2023, 2023
Short summary
Comparing climate time series – Part 4: Annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 187–203, https://doi.org/10.5194/ascmo-8-187-2022,https://doi.org/10.5194/ascmo-8-187-2022, 2022
Short summary
Statistical reconstruction of European winter snowfall in reanalysis and climate models based on air temperature and total precipitation
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022,https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary

Cited articles

Arkin, P. A.: The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation, Mon. Weather Rev., 110, 1393–1404, 1982.
Balling, R. C. J. and Cerveny, R. S.: Analysis of tropical cyclone intensification trends and variability in the North Atlantic Basin over the period 1970-2003, Meteorol. Atmos. Phys., 93, 45–51, https://doi.org/10.1007/s00703-006-0196-5, 2006.
Besag, J.: Statistical analysis of non-lattice data, Statistician, 179–195, 1975.
Blangiardo, M. and Cameletti, M.: Spatial and Spatio-temporal Bayesian Models with R-INLA, John Wiley & Sons, 2015.
Cressie, N. and Wikle, C. K.: Statistics for spatio-temporal data, John Wiley & Sons, 2011.
Download
Short summary
Climate influences on hurricane intensification are investigated by averaging hourly intensification rates over the period 1975–2014 in 8° by 8° latitude–longitude grid cells. The statistical effects of hurricane intensity, sea-surface temperature (SST), El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Madden–Julian Oscillation (MJO) are quantified. Intensity, SST, and NAO had a positive effect on intensification rates. The NAO effect should be further studied.