Articles | Volume 4, issue 1/2
https://doi.org/10.5194/ascmo-4-53-2018
https://doi.org/10.5194/ascmo-4-53-2018
06 Dec 2018
 | 06 Dec 2018

An integration and assessment of multiple covariates of nonstationary storm surge statistical behavior by Bayesian model averaging

Tony E. Wong

Related authors

Analysis of the evolution of parametric drivers of high-end sea-level hazards
Alana Hough and Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 117–134, https://doi.org/10.5194/ascmo-8-117-2022,https://doi.org/10.5194/ascmo-8-117-2022, 2022
Short summary
BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections
Tony E. Wong, Alexander M. R. Bakker, Kelsey Ruckert, Patrick Applegate, Aimée B. A. Slangen, and Klaus Keller
Geosci. Model Dev., 10, 2741–2760, https://doi.org/10.5194/gmd-10-2741-2017,https://doi.org/10.5194/gmd-10-2741-2017, 2017
Short summary

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Arns, A., Wahl, T., Haigh, I. D., Jensen, J., and Pattiaratchi, C.: Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise, Coast. Eng., 81, 51–66, https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013. 
Buchanan, M. K., Oppenheimer, M., and Kopp, R. E.: Amplification of flood frequencies with local sea level rise and emerging flood regimes, Environ. Res. Lett., 12, 064009, https://doi.org/10.1088/1748-9326/aa6cb3, 2017. 
Bulteau, T., Idier, D., Lambert, J., and Garcin, M.: How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France), Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, 2015. 
Caldwell, P. C., Merrfield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA Natl. Centers Environ. Information, Dataset, https://doi.org/10.7289/V5V40S7W, 2015. 
Ceres, R., Forest, C. E., and Keller, K.: Understanding the detectability of potential changes to the 100-year peak storm surge, Clim. Change, 145, 221–235, https://doi.org/10.1007/s10584-017-2075-0, 2017. 
Download
Short summary
Millions of people worldwide are at a risk of coastal flooding, and this number will increase as the climate continues to change. This study analyzes how climate change affects future flood hazards. A new model that uses multiple climate variables for flood hazard is developed. For the case study of Norfolk, Virginia, the model predicts 23 cm higher flood levels relative to previous work. This work shows the importance of accounting for climate change in effectively managing coastal risks.