Articles | Volume 4, issue 1/2
https://doi.org/10.5194/ascmo-4-53-2018
https://doi.org/10.5194/ascmo-4-53-2018
06 Dec 2018
 | 06 Dec 2018

An integration and assessment of multiple covariates of nonstationary storm surge statistical behavior by Bayesian model averaging

Tony E. Wong

Related authors

Feedback-based sea level rise impact modelling for integrated assessment models with FRISIAv1.0
Lennart Ramme, Benjamin Blanz, Christopher Wells, Tony E. Wong, William Schoenberg, Chris Smith, and Chao Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-1875,https://doi.org/10.5194/egusphere-2025-1875, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Analysis of the evolution of parametric drivers of high-end sea-level hazards
Alana Hough and Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 117–134, https://doi.org/10.5194/ascmo-8-117-2022,https://doi.org/10.5194/ascmo-8-117-2022, 2022
Short summary
BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections
Tony E. Wong, Alexander M. R. Bakker, Kelsey Ruckert, Patrick Applegate, Aimée B. A. Slangen, and Klaus Keller
Geosci. Model Dev., 10, 2741–2760, https://doi.org/10.5194/gmd-10-2741-2017,https://doi.org/10.5194/gmd-10-2741-2017, 2017
Short summary

Related subject area

Statistics
On inference of boxplot symbolic data: applications in climatology
Abdolnasser Sadeghkhani and Ali Sadeghkhani
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 73–87, https://doi.org/10.5194/ascmo-11-73-2025,https://doi.org/10.5194/ascmo-11-73-2025, 2025
Short summary
Proper scoring rules for multivariate probabilistic forecasts based on aggregation and transformation
Romain Pic, Clément Dombry, Philippe Naveau, and Maxime Taillardat
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 23–58, https://doi.org/10.5194/ascmo-11-23-2025,https://doi.org/10.5194/ascmo-11-23-2025, 2025
Short summary
Reducing reliability bias in assessments of extreme weather risk using calibrating priors
Stephen Jewson, Trevor Sweeting, and Lynne Jewson
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 1–22, https://doi.org/10.5194/ascmo-11-1-2025,https://doi.org/10.5194/ascmo-11-1-2025, 2025
Short summary
A non-stationary climate-informed weather generator for assessing future flood risks
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024,https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary

Cited articles

Arns, A., Wahl, T., Haigh, I. D., Jensen, J., and Pattiaratchi, C.: Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise, Coast. Eng., 81, 51–66, https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013. 
Buchanan, M. K., Oppenheimer, M., and Kopp, R. E.: Amplification of flood frequencies with local sea level rise and emerging flood regimes, Environ. Res. Lett., 12, 064009, https://doi.org/10.1088/1748-9326/aa6cb3, 2017. 
Bulteau, T., Idier, D., Lambert, J., and Garcin, M.: How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France), Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, 2015. 
Caldwell, P. C., Merrfield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA Natl. Centers Environ. Information, Dataset, https://doi.org/10.7289/V5V40S7W, 2015. 
Ceres, R., Forest, C. E., and Keller, K.: Understanding the detectability of potential changes to the 100-year peak storm surge, Clim. Change, 145, 221–235, https://doi.org/10.1007/s10584-017-2075-0, 2017. 
Download
Short summary
Millions of people worldwide are at a risk of coastal flooding, and this number will increase as the climate continues to change. This study analyzes how climate change affects future flood hazards. A new model that uses multiple climate variables for flood hazard is developed. For the case study of Norfolk, Virginia, the model predicts 23 cm higher flood levels relative to previous work. This work shows the importance of accounting for climate change in effectively managing coastal risks.
Share