Baddeley, A. J.: An error metric for
binary images, in: Robust Computer Vision Algorithms, edited by: Forstner, W. and Ruwiedel, S., Wichmann, 402 pp., 59–78, available at:
https://pdfs.semanticscholar.org/aa50/669b71429f2ca54d64f93839a9da95ceba6b.pdf (last access: 14 May 2020), 1992b.
a,
b,
c,
d,
e,
f
Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P., and Deckmyn, A.:
maps: Draw Geographical Maps, R package version
3.3.0, available at:
https://CRAN.R-project.org/package=maps (last access: 11 February 2021), 2018. a
Brunet, D. and Sills, D.: A generalized distance transform: Theory and
applications to weather analysis and forecasting, IEEE T. Geosci. Remote, 55, 1752–1764,
https://doi.org/10.1109/TGRS.2016.2632042, 2017.
a
Brunet, D., Sills, D., and Casati, B.: A spatio-temporal user-centric distance
for forecast verification, Meterol. Z., 27, 441–453,
https://doi.org/10.1127/metz/2018/0883, 2018.
a
Casati, B., Ross, G., and Stephenson, D. B.: A new intensity-scale approach for
the verification of spatial precipitation forecasts, Meteorol. Appl., 11,
141–154,
https://doi.org/10.1017/S1350482704001239, 2004.
a,
b
Davis, C., Brown, B., and Bullock, R.: Object-Based Verification of
Precipitation Forecasts. Part I: Methodology and Application to Mesoscale
Rain Areas, Mon. Weather Rev., 134, 1772–1784, 2006a.
a,
b,
c
Davis, C., Brown, B., and Bullock, R.: Object-Based Verification of
Precipitation Forecasts. Part II: Application to Convective Rain Systems,
Mon. Weather Rev., 134, 1785–1795, 2006b.
a,
b,
c
Davis, C. A., Brown, B. G., Bullock, R., and Halley-Gotway, J.: The Method for
Object-Based Diagnostic Evaluation (MODE) Applied to Numerical Forecasts
from the 2005 NSSL/SPC Spring Program, Weather Forecast., 24, 1252–1267,
2009.
a,
b,
c,
d
Dorninger, M., Mittermaier, M. P., Gilleland, E., Ebert, E. E., Brown, B. G.,
and Wilson, L. J.: MesoVICT: Mesoscale Verification Inter-Comparison over
Complex Terrain, Tech. rep., No. NCAR/TN-505+STR,
https://doi.org/10.5065/D6416V21,
2013.
a,
b
Dorninger, M., Gilleland, E., Casati, B., Mittermaier, M. P., Ebert, E. E.,
Brown, B. G., and Wilson, L.: The set-up of the Mesoscale Verification
Inter-Comparison over Complex Terrain project, B. Am. Meteorol. Soc.,
99, 1887–1906,
https://doi.org/10.1175/BAMS-D-17-0164.1, 2018.
a,
b
Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: a review
and proposed framework, Meteorol. Appl., 15, 51–64, 2008. a
Gilleland, E.: Spatial Forecast Verification: Baddeley's Delta Metric Applied
to the ICP Test Cases, Weather Forecast., 26, 409–415, 2011. a
Gilleland, E.: Testing Competing Precipitation Forecasts Accurately and
Efficiently: The Spatial Prediction Comparison Test, Mon. Weather Rev.,
141, 340–355, 2013.
a,
b,
c
Gilleland, E.: A New Characterization within the Spatial Verification Framework
for False Alarms, Misses, and Overall Patterns, Weather Forecast., 32,
187–198, 2017.
a,
b,
c,
d,
e,
f,
g,
h
Gilleland, E.: SpatialVx: Spatial Forecast Verification, R package
version 0.6-6,
available at:
http://www.ral.ucar.edu/projects/icp/SpatialVx (last access: 11 February 2021), 2019. a
Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.:
Intercomparison of Spatial Forecast Verification Methods, Weather Forecast.,
24, 1416–1430, 2009. a
Gilleland, E., Lindström, J., and Lindgren, F.: Analyzing the image warp
forecast verification method on precipitation fields from the ICP, Weather
Forecast., 25, 1249–1262, 2010.
a,
b,
c,
d,
e,
f,
g,
h,
i
Gilleland, E., Skok, G., Brown, B. G., Casati, B., Dorninger, M., Mittermaier, M. P., Roberts, N., and Wilson, L. J.: A novel set of verification test
fields with application to distance measures, Mon. Weather Rev., 148, 1653–1673,
https://doi.org/10.1175/MWR-D-19-0256.1, 2020.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t
Kain, J. S., Weiss, S. J., Bright, D. R., Baldwin, M. E., Levit, J. J., Carbin, G. W., Schwartz, C. S., Weisman, M. L., Droegemeier, K. K., Weber, D. B., and
Thomas, K. W.: Some practical considerations regarding horizontal resolution
in the first generation of operational convection-allowing NWP, Weather
Forecast., 23, 931–952,
https://doi.org/10.1175/WAF2007106.1, 2008.
a
Keil, C. and Craig, G.: A displacement-based error measure applied in a
regional ensemble forecasting system, Mon. Weather Rev., 135, 3248–3259, 2007. a
Keil, C. and Craig, G.: A displacement and amplitude score employing an optical
flow technique, Weather Forecast., 24, 1297–1308, 2009. a
Koch, J., Jensen, K. H., and Stisen, S.: Toward a true spatial model evaluation
in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF-analysis benchmarked by the human perception and evaluated against a
modeling case study, Water Resour. Res., 51, 1225–1246,
https://doi.org/10.1002/2014WR016607, 2015.
a
Koch, J., Siemann, A., Stisen, S., and Sheffield, J.: Spatial validation of
large-scale land surface models against monthly land surface temperature
patterns using innovative performance metrics, J. Geophys. Res.-Atmos., 121, 5430–5452,
https://doi.org/10.1002/2015JD024482, 2016.
a
Koch, J., Demirel, M. C., and Stisen, S.: The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models, Geosci. Model Dev., 11, 1873–1886,
https://doi.org/10.5194/gmd-11-1873-2018, 2018.
a
Mass, C. F., Ovens, D., Westrick, K., and Colle, B. A.: Does Increasing
Horizontal Resolution Produce More Skillful Forecasts?, B. Am. Meteorol. Soc., 83, 407–430,
https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2, 2002.
a
Meijster, A., Roerdink, J. B. T. M., and Hesselink, W. H.: A General Algorithm for Computing Distance Transforms in Linear Time, in: Mathematical Morphology and its Applications to Image and Signal Processing, edited by: Goutsias, J., Vincent, L., Bloomberg, D. S., Computational Imaging and Vision, Springer, Boston, MA, 18,
https://doi.org/10.1007/0-306-47025-X_36, 2000.
a
Mittermaier, M. P.: A strategy for verifying near-convection resolving model forecasts at observing sites, Weather Forecast., 29, 185–204, 2014. a
Nychka, D., Furrer, R., Paige, J., and Sain, S.: fields: Tools for spatial
data, R package version 10.0,
https://doi.org/10.5065/D6W957CT, available at:
https://github.com/NCAR/Fields (last access: 11 February 2021), 2017.
a
Peli, T. and Malah, D.: A study on edge detection algorithms, Comput. Vision Graph., 20, 1–21, 1982.
a,
b,
c,
d,
e
Pratt, W. K.: Digital Image Processing, 4th edn., John Wiley and Sons, Inc., Hoboken, New
Jersey, 782 pp., 2007.
a,
b
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
available at:
https://www.R-project.org/ (last access: 11 February 2021), 2018. a
Rezacova, D., Sokol, Z., and Pesice, P.: A radar-based verification of
precipitation forecast for local convective storms, Atmos. Res., 83,
221–224,
https://doi.org/10.1016/j.atmosres.2005.08.011, 2007.
a
Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall
Accumulations from High-Resolution Forecasts of Convective Events, Mon.
Weather Rev., 136, 78–97, 2008. a
Rossa, A. M., Nurmi, P., and Ebert, E. E.: Overview of methods for the
verification of quantitative precipitation forecasts, edited by: Michaelides, S. C., Springer, New York, NY, USA, 418–450, 2008. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, M., Wang, W.,
and Powers, J. G.: A description of the Advanced Research WRF version 2,
Ncar tech. rep. ncar/tn-468+str, Boulder, CO, USA, 2005. a
Venugopal, V., Basu, S., and Foufoula-Georgiou, E.: A new metric for comparing
precipitation patterns with an application to ensemble forecasts, J. Geophys.
Res., 110, D08111,
https://doi.org/10.1029/2004JD005395, 2005.
a
Weniger, M., Kapp, F., and Friederichs, P.: Spatial Verification Using Wavelet
Transforms: A Revie, Q. J. Royal Meteor. Soc., 143,
120–136,
https://doi.org/10.1002/qj.2881, 2016.
a
Wikle, C. K., Zammit-Mangion, A., and Cressie, N.: Spatio-Temporal Statistics
with R, Chapman and Hall/CRC, Boca Raton, Florida, USA, 396 pp.,
available at:
https://spacetimewithr.org (last access: 11 February 2021), 2019.
a
Zhang, J., Craigmile, P. F., and Cressie, N.: Loss function approaches to
predict a spatial quantile and its exceedance region, Technometrics, 50, 216–227,
https://doi.org/10.1198/004017008000000226, 2008.
a
Zinner, T., Mannstein, H., and Taferner, A.: Cb-TRAM: Tracking and monitoring
severe convection from onset over rapid development to mature phase using
multi-channel Meteosat-8 SEVIRI data, Meteorol. Atmos. Phys., 101, 191–210,
https://doi.org/10.1007/s00703-008-0290-y, 2008.
a