Articles | Volume 8, issue 2
https://doi.org/10.5194/ascmo-8-205-2022
https://doi.org/10.5194/ascmo-8-205-2022
02 Dec 2022
 | 02 Dec 2022

A conditional approach for joint estimation of wind speed and direction under future climates

Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi

Related authors

Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022,https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022,https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022,https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Fast and accurate learned multiresolution dynamical downscaling for precipitation
Jiali Wang, Zhengchun Liu, Ian Foster, Won Chang, Rajkumar Kettimuthu, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 6355–6372, https://doi.org/10.5194/gmd-14-6355-2021,https://doi.org/10.5194/gmd-14-6355-2021, 2021
Short summary

Related subject area

Statistics
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary
Statistical modeling of the space–time relation between wind and significant wave height
Said Obakrim, Pierre Ailliot, Valérie Monbet, and Nicolas Raillard
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 67–81, https://doi.org/10.5194/ascmo-9-67-2023,https://doi.org/10.5194/ascmo-9-67-2023, 2023
Short summary
Modeling general circulation model bias via a combination of localized regression and quantile mapping methods
Benjamin James Washington, Lynne Seymour, and Thomas L. Mote
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 1–28, https://doi.org/10.5194/ascmo-9-1-2023,https://doi.org/10.5194/ascmo-9-1-2023, 2023
Short summary

Cited articles

Abatzoglou, J. T., Hatchett, B. J., Fox-Hughes, P., Gershunov, A., and Nauslar, N. J.: Global climatology of synoptically-forced downslope winds, 41, 31–50, https://doi.org/10.1002/joc.6607, 2021. a
Ailliot, P., Bessac, J., Monbet, V., and Pene, F.: Non-homogeneous hidden Markov-switching models for wind time series, J. Statist. Plan. Inf., 160, 75–88, 2015. a
Akinsanola, A. A., Ogunjobi, K. O., Abolude, A. T., and Salack, S.: Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models, Environ. Res. Lett., 16, 044033, https://doi.org/10.1088/1748-9326/abed7a, 2021. a
Bessac, J., Ailliot, P., Cattiaux, J., and Monbet, V.: Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic, Adv. Statist. Climatol., Meteorology and Oceanography, 2, 1–16, 2016. a
Bessac, J., Monahan, A. H., Christensen, H. M., and Weitzel, N.: Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes, Mon. Weather Rev., 147, 1447–1469, https://doi.org/10.1175/MWR-D-18-0384.1, 2019. a
Download
Short summary
We study wind conditions and their potential future changes across the U.S. via a statistical conditional framework. We conclude that changes between historical and future wind directions are small, but wind speeds are generally weakened in the projected period, with some locations being intensified. Moreover, winter wind speeds are projected to decrease in the northwest, Colorado, and the northern Great Plains (GP), while summer wind speeds over the southern GP slightly increase in the future.