Articles | Volume 10, issue 2
https://doi.org/10.5194/ascmo-10-105-2024
https://doi.org/10.5194/ascmo-10-105-2024
02 Sep 2024
 | 02 Sep 2024

Parametric model for post-processing visibility ensemble forecasts

Ágnes Baran and Sándor Baran

Related authors

Simulation-based comparison of multivariate ensemble post-processing methods
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371, https://doi.org/10.5194/npg-27-349-2020,https://doi.org/10.5194/npg-27-349-2020, 2020
Short summary

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Baran, Á and Baran, S.: A two-step machine learning approach to statistical post-processing of weather forecasts for power generation, Q. J. Roy. Meteor. Soc., 150, 1029–1047. https://doi.org/10.1002/qj.4635, 2024. a, b, c
Baran, Á., Lerch, S., El Ayari, M., and Baran, S.: Machine learning for total cloud cover prediction, Neural. Comput. Appl., 33, 2605–2620, https://doi.org/10.1007/s00521-020-05139-4, 2021. a, b
Baran, S. and Baran, Á.: Calibration of wind speed ensemble forecasts for power generation, Időjárás, 125, 609–624, https://doi.org/10.28974/idojaras.2021.4.4, 2021. a
Baran, S. and Lakatos, M.: Statistical post-processing of visibility ensemble forecasts, Meteorol. Appl., 30, e2157, https://doi.org/10.1002/met.2157, 2023. a, b, c, d
Baran, S. and Lerch, S.: Mixture EMOS model for calibrating ensemble forecasts of wind speed, Environmetrics, 27, 116–130, https://doi.org/10.1002/env.2380, 2016. a
Download
Short summary
The paper proposes a novel parametric model for statistical post-processing of visibility ensemble forecasts; investigates various approaches to parameter estimation; and, using two case studies, provides a detailed comparison with the existing state-of-the-art forecasts. The introduced approach consistently outperforms both the raw ensemble forecasts and the reference parametric post-processing method.