Articles | Volume 5, issue 2
https://doi.org/10.5194/ascmo-5-115-2019
https://doi.org/10.5194/ascmo-5-115-2019
18 Jul 2019
 | 18 Jul 2019

Bivariate Gaussian models for wind vectors in a distributional regression framework

Moritz N. Lang, Georg J. Mayr, Reto Stauffer, and Achim Zeileis

Related authors

Predicting power ramps from joint distributions of future wind speeds
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022,https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020,https://doi.org/10.5194/npg-27-23-2020, 2020
Short summary
The impact of embedded valleys on daytime pollution transport over a mountain range
M. N. Lang, A. Gohm, and J. S. Wagner
Atmos. Chem. Phys., 15, 11981–11998, https://doi.org/10.5194/acp-15-11981-2015,https://doi.org/10.5194/acp-15-11981-2015, 2015

Related subject area

Statistics
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary
Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary
Parametric model for post-processing visibility ensemble forecasts
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024,https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary

Cited articles

Baran, S.: Probabilistic Wind Speed Forecasting Using Bayesian Model Averaging with Truncated Normal Components, Comput. Stat. Data An., 75, 227–238, https://doi.org/10.1016/j.csda.2014.02.013, 2014. a
Baran, S. and Lerch, S.: Log-Normal Distribution Based Ensemble Model Output Statistics Models for Probabilistic Wind-Speed Forecasting, Q. J. Roy. Meteor. Soc., 141, 2289–2299, https://doi.org/10.1002/qj.2521, 2015. a
Baran, S. and Lerch, S.: Mixture EMOS Model for Calibrating Ensemble Forecasts of Wind Speed, Environmetrics, 27, 116–130, https://doi.org/10.1002/env.2380, 2016. a
Buizza, R., Houtekamer, P. L., Pellerin, G., Toth, Z., Zhu, Y., and Wei, M.: A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems, Mon. Weather Rev., 133, 1076–1097, https://doi.org/10.1175/MWR2905.1, 2005. a
Courtney, J. F., Lynch, P., and Sweeney, C.: High Resolution Forecasting for Wind Energy Applications Using Bayesian Model Averaging, Tellus A, 65, 19669, https://doi.org/10.3402/tellusa.v65i0.19669, 2013. a
Download
Short summary
Accurate wind forecasts are of great importance for decision-making processes in today's society. This work presents a novel probabilistic post-processing method for wind vector forecasts employing a bivariate Gaussian response distribution. To capture a possible mismatch between the predicted and observed wind direction caused by location-specific properties, the approach incorporates a smooth rotation of the wind direction conditional on the season and the forecasted ensemble wind direction.