Articles | Volume 6, issue 2
https://doi.org/10.5194/ascmo-6-159-2020
https://doi.org/10.5194/ascmo-6-159-2020
12 Oct 2020
 | 12 Oct 2020

Comparing climate time series – Part 1: Univariate test

Timothy DelSole and Michael K. Tippett

Related authors

Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Comparing climate time series – Part 4: Annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 187–203, https://doi.org/10.5194/ascmo-8-187-2022,https://doi.org/10.5194/ascmo-8-187-2022, 2022
Short summary
Comparing climate time series – Part 3: Discriminant analysis
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 97–115, https://doi.org/10.5194/ascmo-8-97-2022,https://doi.org/10.5194/ascmo-8-97-2022, 2022
Short summary
Comparing climate time series – Part 2: A multivariate test
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 73–85, https://doi.org/10.5194/ascmo-7-73-2021,https://doi.org/10.5194/ascmo-7-73-2021, 2021
Short summary

Related subject area

Statistics
Reducing reliability bias in assessments of extreme weather risk using calibrating priors
Stephen Jewson, Trevor Sweeting, and Lynne Jewson
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 1–22, https://doi.org/10.5194/ascmo-11-1-2025,https://doi.org/10.5194/ascmo-11-1-2025, 2025
Short summary
A non-stationary climate-informed weather generator for assessing future flood risks
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024,https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary
Spatiotemporal functional permutation tests for comparing observed climate behavior to climate model projections
Joshua P. French, Piotr S. Kokoszka, and Seth McGinnis
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 123–141, https://doi.org/10.5194/ascmo-10-123-2024,https://doi.org/10.5194/ascmo-10-123-2024, 2024
Short summary
Parametric model for post-processing visibility ensemble forecasts
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024,https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary

Cited articles

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C.: Time Series Analysis: Forecasting and Control, Wiley-Interscience, 4th Edn., 2008. a, b, c, d
Brockwell, P. J. and Davis, R. A.: Time Series: Theory and Methods, Springer Verlag, 2nd Edn., 1991. a
Brockwell, P. J. and Davis, R. A.: Introduction to Time Series and Forecasting, Springer, 2002. a
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016.  a
Coates, D. S. and Diggle, P. J.: Test for comparing two estimated spectral densities, J. Time Ser. Anal., 7, 7–20, 1986. a, b
Short summary
Scientists often are confronted with the question of whether two time series are statistically distinguishable. This paper proposes a test for answering this question. The basic idea is to fit each time series to a time series model and then test whether the parameters in that model are equal. If a difference is detected, then new ways of visualizing those differences are proposed, including a clustering technique and a method based on optimal initial conditions.
Share