18 Nov 2020
18 Nov 2020
Nonstationary extreme value analysis for event attribution combining climate models and observations
Yoann Robin and Aurélien Ribes
Related authors
Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019,https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Related subject area
A statistical approach to fast nowcasting of lightning potential fields
Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 79–90, https://doi.org/10.5194/ascmo-6-79-2020,https://doi.org/10.5194/ascmo-6-79-2020, 2020
Short summary
Fitting a stochastic fire spread model to data
X. Joey Wang, John R. J. Thompson, W. John Braun, and Douglas G. Woolford
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 57–66, https://doi.org/10.5194/ascmo-5-57-2019,https://doi.org/10.5194/ascmo-5-57-2019, 2019
Short summary
Probabilistic evaluation of competing climate models
Amy Braverman, Snigdhansu Chatterjee, Megan Heyman, and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 93–105, https://doi.org/10.5194/ascmo-3-93-2017,https://doi.org/10.5194/ascmo-3-93-2017, 2017
Short summary
Evaluating NARCCAP model performance for frequencies of severe-storm environments
Eric Gilleland, Melissa Bukovsky, Christopher L. Williams, Seth McGinnis, Caspar M. Ammann, Barbara G. Brown, and Linda O. Mearns
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 137–153, https://doi.org/10.5194/ascmo-2-137-2016,https://doi.org/10.5194/ascmo-2-137-2016, 2016
Short summary
Calibrating regionally downscaled precipitation over Norway through quantile-based approaches
David Bolin, Arnoldo Frigessi, Peter Guttorp, Ola Haug, Elisabeth Orskaug, Ida Scheel, and Jonas Wallin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 39–47, https://doi.org/10.5194/ascmo-2-39-2016,https://doi.org/10.5194/ascmo-2-39-2016, 2016
Cited articles
CMIP5: CLIVAR Exchanges – Special Issue: WCRP Coupled Model Intercomparison
Project – Phase 5 – CMIP5, Project Report 56,
available at:
https://eprints.soton.ac.uk/194679/ (last access: 9 November 2020), 2011.
a,
b,
c
Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to
statistical modeling of extreme values, vol. 208, Springer Series in Statistics, Springer-Verlag, London, 2001. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data
Sets, J. Geophys. Res.-Atmos., 123, 9391–9409,
https://doi.org/10.1029/2017JD028200,
2018.
a
Eaton, M. L.: Multivariate statistics: a vector space approach, John Wiley &
Sons, INC., 605 Third Ave., New York, NY 10158, USA, 1983, 512, 1983. a
Gabda, D., Tawn, J., and Brown, S.: A step towards efficient inference for
trends in UK extreme temperatures through distributional linkage between
observations and climate model data, Nat. Hazards, 98, 1135–1154,
https://doi.org/10.1007/s11069-018-3504-8, 2019.
a
Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L.,
and Tytéca, S.: Transient Climate Response in a Two-Layer Energy-Balance
Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and
Validation for CMIP5 AOGCMs, J. Climate, 26, 1859–1876,
https://doi.org/10.1175/JCLI-D-12-00196.1, 2013.
a
Hansen, G., Auffhammer, M., and Solow, A. R.: On the Attribution of a Single
Event to Climate Change, J. Climate, 27, 8297–8301,
https://doi.org/10.1175/JCLI-D-14-00399.1, 2014.
a
Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., and Vallis,
G. K.: Probing the Fast and Slow Components of Global Warming by Returning
Abruptly to Preindustrial Forcing, J. Climate, 23, 2418–2427,
https://doi.org/10.1175/2009JCLI3466.1, 2010.
a
Hibbard, K. A., Meehl, G. A., Cox, P. M., and Friedlingstein, P.: A strategy
for climate change stabilization experiments, Eos, Transactions American
Geophysical Union, 88, 217–221,
https://doi.org/10.1029/2007EO200002,
2007.
a
Hosking, J. R. M.: L-Moments: Analysis and Estimation of Distributions Using
Linear Combinations of Order Statistics, J. Royal Stat. Soc.-Ser. B, 52,
105–124, 1990. a
Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: Estimation of the
Generalized Extreme-Value Distribution by the Method of Probability-Weighted
Moments, Technometrics, 27, 251–261,
https://doi.org/10.1080/00401706.1985.10488049,
1985.
a,
b
Jones, P. D., New, M., Parker, D. E., Martin, S., and Rigor, I. G.: Surface air
temperature and its changes over the past 150 years, Rev. Geophys., 37,
173–199,
https://doi.org/10.1029/1999RG900002,
1999.
a,
b
Jones, P. D., Osborn, T. J., Briffa, K. R., Folland, C. K., Horton, E. B.,
Alexander, L. V., Parker, D. E., and Rayner, N. A.: Adjusting for sampling
density in grid box land and ocean surface temperature time series, J. Geophys. Res.-Atmos., 106, 3371–3380,
https://doi.org/10.1029/2000JD900564,
2001.
a,
b
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and
Morice, C. P.: Hemispheric and large-scale land-surface air temperature
variations: An extensive revision and an update to 2010, J. Geophys. Res.-Atmos., 117, D5,
https://doi.org/10.1029/2011JD017139,
2012.
a,
b
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 2. Biases and homogenization, J. Geophys. Res.-Atmos., 116, D14,
https://doi.org/10.1029/2010JD015220,
2011.
a,
b
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu,
G., Dixon, K., Giorgetta, M. A., Greene, A. M., Hawkins, E., Hegerl, G.,
Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra, A., Pulwarty,
R., Smith, D., Stammer, D., and Stockdale, T.: Decadal Prediction, B. Am.
Meteorol. Soc., 90, 1467–1486,
https://doi.org/10.1175/2009BAMS2778.1, 2009.
a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res.-Atmos., 117, D8,
https://doi.org/10.1029/2011JD017187,
2012.
a,
b
Otto, F. E. L., van der Wiel, K., van Oldenborgh, G. J., Philip, S., Kew,
S. F., Uhe, P., and Cullen, H.: Climate change increases the probability of
heavy rains in Northern England/Southern Scotland like those of storm
Desmond – a real-time event attribution revisited, Environ. Res.
Lett., 13, 024006,
https://doi.org/10.1088/1748-9326/aa9663, 2018.
a
Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G.,
Lohmann, D., and Allen, M. R.: Anthropogenic greenhouse gas contribution to
flood risk in England and Wales in autumn 2000, Nature, 470, 382–385, 2011. a
Philip, S., Kew, S. F., Jan van Oldenborgh, G., Aalbers, E., Vautard, R., Otto,
F., Haustein, K., Habets, F., and Singh, R.: Validation of a Rapid
Attribution of the May/June 2016 Flood-Inducing Precipitation in France to
Climate Change, J. Hydrometeorol, 19, 1881–1898,
https://doi.org/10.1175/JHM-D-18-0074.1, 2018.
a
Riahi, K., Grübler, A., and Nakicenovic, N.: Scenarios of long-term
socio-economic and environmental development under climate stabilization,
Technol. Forecast. Soc. Change, 74, 887–935,
https://doi.org/10.1016/j.techfore.2006.05.026, 2007.
a
Ribes, A., Corre, L., Gibelin, A.-L., and Dubuisson, B.: Issues in estimating
observed change at the local scale – a case study: the recent warming over
France, Int. J. Climatol., 36, 3794–3806,
https://doi.org/10.1002/joc.4593,
2016.
a
Ribes, A., Zwiers, F. W., Azaïs, J.-M., and Naveau, P.: A new
statistical approach to climate change detection and attribution, Clim.
Dynam., 48, 367–386,
https://doi.org/10.1007/s00382-016-3079-6, 2017.
a,
b
Ribes, A., Thao, S., and Cattiaux, J.: Describing the relationship between a
weather event and climate change: a new statistical approach, J. Climate, 33, 6297–6314,
https://doi.org/10.1175/JCLI-D-19-0217.1, 2020.
a,
b,
c,
d,
e,
f,
g,
h
Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the
European heatwave of 2003, Nature, 432, 610–614,
https://doi.org/10.1038/nature03089,
2004.
a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
a
van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Philip, S., Vecchi, G. A., Singh, R. K., Arrighi, J., and Cullen, H.: Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change, Hydrol. Earth Syst. Sci., 21, 897–921,
https://doi.org/10.5194/hess-21-897-2017, 2017.
a,
b,
c,
d
van Oldenborgh, G. J., Haarsma, R., De Vries, H., and Allen, M. R.: Cold
Extremes in North America vs. Mild Weather in Europe: The Winter of 2013–14
in the Context of a Warming World, B. Am. Meteorol. Soc., 96, 707–714,
https://doi.org/10.1175/BAMS-D-14-00036.1,
2015a.
a
van Oldenborgh, G. J., Otto, F. E. L., Haustein, K., and Cullen, H.: Climate change increases the probability of heavy rains like those of storm Desmond in the UK – an event attribution study in near-real time, Hydrol. Earth Syst. Sci. Discuss., 12, 13197–13216,
https://doi.org/10.5194/hessd-12-13197-2015, 2015b.
a,
b,
c,
d
van Oldenborgh, G. J., Philip, S., Kew, S., van Weele, M., Uhe, P., Otto, F., Singh, R., Pai, I., Cullen, H., and AchutaRao, K.: Extreme heat in India and anthropogenic climate change, Nat. Hazards Earth Syst. Sci., 18, 365–381,
https://doi.org/10.5194/nhess-18-365-2018, 2018.
a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Clim. Change, 109, 5,
https://doi.org/10.1007/s10584-011-0148-z, 2011.
a
Vautard, R., Boucher, O., van Oldenborgh, G. J., Otto, F., Haustein, K., Vogel,
M. M., Seneviratne, S. I., Soubeyroux, J.-M., Schneider, M., Drouin, A.,
Ribes, A., Kreienkamp, F., Stott, P., and van Aalst, M.: Human contribution
to the record-breaking July 2019 heatwave in Western Europe,
available at:
https://www.worldweatherattribution.org/human-contribution-to-the-record-breaking-july-2019-heat-wave-in-western-europe,
last access: 19 September 2019.
a,
b,
c
Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp,
F., van Oldenborgh, G. J., Otto, F. E. L., Ribes, A., Robin, Y., Schneider,
M., Soubeyroux, J.-M., Stott, P., Seneviratne, S. I., Vogel, M., and Wehner,
M.: Human contribution to the record-breaking June and July 2019 heatwaves in
Western Europe, Environ. Res. Lett., 15, 094077,
https://doi.org/10.1088/1748-9326/aba3d4, 2020.
a
Wehner, M., Stone, D., Shiogama, H., Wolski, P., Ciavarella, A., Christidis,
N., and Krishnan, H.: Early 21st century anthropogenic changes in extremely
hot days as simulated by the C20C+ detection and attribution multi-model
ensemble, Weather and Climate Extremes, 20, 1–8,
https://doi.org/10.1016/j.wace.2018.03.001,
2018.
a