Journal cover Journal topic
Advances in Statistical Climatology, Meteorology and Oceanography An international open-access journal on applied statistics
Journal topic

Journal metrics

CiteScore value: 0.1
CiteScore
0.1
Scimago H <br class='widget-line-break'>index value: 1
Scimago H
index
1
ASCMO | Articles | Volume 6, issue 2
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, 2020
https://doi.org/10.5194/ascmo-6-205-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, 2020
https://doi.org/10.5194/ascmo-6-205-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  18 Nov 2020

18 Nov 2020

Nonstationary extreme value analysis for event attribution combining climate models and observations

Yoann Robin and Aurélien Ribes

Related authors

Multivariate bias corrections of climate simulations: which benefits for which losses?
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020,https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
Multivariate stochastic bias corrections with optimal transport
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019,https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary
Detecting changes in forced climate attractors with Wasserstein distance
Yoann Robin, Pascal Yiou, and Philippe Naveau
Nonlin. Processes Geophys., 24, 393–405, https://doi.org/10.5194/npg-24-393-2017,https://doi.org/10.5194/npg-24-393-2017, 2017
Short summary

Related subject area

Statistics
Comparing climate time series – Part 1: Univariate test
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 159–175, https://doi.org/10.5194/ascmo-6-159-2020,https://doi.org/10.5194/ascmo-6-159-2020, 2020
Short summary
A statistical approach to fast nowcasting of lightning potential fields
Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 79–90, https://doi.org/10.5194/ascmo-6-79-2020,https://doi.org/10.5194/ascmo-6-79-2020, 2020
Short summary
Spatial trend analysis of gridded temperature data at varying spatial scales
Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 1–12, https://doi.org/10.5194/ascmo-6-1-2020,https://doi.org/10.5194/ascmo-6-1-2020, 2020
Short summary
An improved projection of climate observations for detection and attribution
Alexis Hannart
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 161–171, https://doi.org/10.5194/ascmo-5-161-2019,https://doi.org/10.5194/ascmo-5-161-2019, 2019
Short summary
Bivariate Gaussian models for wind vectors in a distributional regression framework
Moritz N. Lang, Georg J. Mayr, Reto Stauffer, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132, https://doi.org/10.5194/ascmo-5-115-2019,https://doi.org/10.5194/ascmo-5-115-2019, 2019
Short summary

Cited articles

Annan, J. D. and Hargreaves, J. C.: Reliability of the CMIP3 ensemble, Geophys. Res. Lett., 37, 2, https://doi.org/10.1029/2009GL041994, 2010. a
CMIP5: CLIVAR Exchanges – Special Issue: WCRP Coupled Model Intercomparison Project – Phase 5 – CMIP5, Project Report 56, available at: https://eprints.soton.ac.uk/194679/ (last access: 9 November 2020), 2011. a, b, c
Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to statistical modeling of extreme values, vol. 208, Springer Series in Statistics, Springer-Verlag, London, 2001. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a
Eaton, M. L.: Multivariate statistics: a vector space approach, John Wiley & Sons, INC., 605 Third Ave., New York, NY 10158, USA, 1983, 512, 1983. a
Publications Copernicus
Download
Short summary
We have developed a new statistical method to describe how a severe weather event, such as a heat wave, may have been influenced by climate change. Our method incorporates both observations and data from various climate models to reflect climate model uncertainty. Our results show that both the probability and the intensity of the French July 2019 heatwave have increased significantly in response to human influence. We find that this heat wave might not have been possible without climate change.
We have developed a new statistical method to describe how a severe weather event, such as a...
Citation