Articles | Volume 8, issue 1
https://doi.org/10.5194/ascmo-8-117-2022
https://doi.org/10.5194/ascmo-8-117-2022
02 Jun 2022
 | 02 Jun 2022

Analysis of the evolution of parametric drivers of high-end sea-level hazards

Alana Hough and Tony E. Wong

Related authors

An integration and assessment of multiple covariates of nonstationary storm surge statistical behavior by Bayesian model averaging
Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 53–63, https://doi.org/10.5194/ascmo-4-53-2018,https://doi.org/10.5194/ascmo-4-53-2018, 2018
Short summary
BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections
Tony E. Wong, Alexander M. R. Bakker, Kelsey Ruckert, Patrick Applegate, Aimée B. A. Slangen, and Klaus Keller
Geosci. Model Dev., 10, 2741–2760, https://doi.org/10.5194/gmd-10-2741-2017,https://doi.org/10.5194/gmd-10-2741-2017, 2017
Short summary

Related subject area

Climate research
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024,https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Changes in the distribution of annual maximum temperatures in Europe
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023,https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary
Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios
Fabian Lehner, Imran Nadeem, and Herbert Formayer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 29–44, https://doi.org/10.5194/ascmo-9-29-2023,https://doi.org/10.5194/ascmo-9-29-2023, 2023
Short summary
Comparing climate time series – Part 4: Annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 187–203, https://doi.org/10.5194/ascmo-8-187-2022,https://doi.org/10.5194/ascmo-8-187-2022, 2022
Short summary
Statistical reconstruction of European winter snowfall in reanalysis and climate models based on air temperature and total precipitation
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022,https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary

Cited articles

Bakker, A. M., Applegate, P. J., and Keller, K.: A simple, physically motivated model of sea-level contributions from the Greenland ice sheet in response to temperature changes, Environ. Modell. Softw., 83, 27–35, https://doi.org/10.1016/j.envsoft.2016.05.003, 2016. a
Bakker, A. M. R., Wong, T. E., Ruckert, K. L., and Keller, K.: Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet, Sci. Rep.-UK, 7, 3880, https://doi.org/10.1038/s41598-017-04134-5, 2017. a, b
Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W.-L., Hu, A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., and Yin, J.: Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting, Geophys. Res. Lett., 43, 12252–12260, https://doi.org/10.1002/2016GL070457, 2016. a
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., and Unnikrishnan, A.: Sea Level Change, Sect. 13, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1137–1216, https://doi.org/10.1017/CBO9781107415324.026, 2013. a
Dayan, H., Le Cozannet, G., Speich, S., and Thiéblemont, R.: High-End Scenarios of Sea-Level Rise for Coastal Risk-Averse Stakeholders, Frontiers in Marine Science, 8, 514, https://doi.org/10.3389/fmars.2021.569992, 2021. a, b
Download
Short summary
We use machine learning to assess how different geophysical uncertainties relate to the severity of future sea-level rise. We show how the contributions to coastal hazard from different sea-level processes evolve over time and find that near-term sea-level hazards are driven by thermal expansion and the melting of glaciers and ice caps, while long-term hazards are driven by ice loss from the major ice sheets.