Articles | Volume 8, issue 1
https://doi.org/10.5194/ascmo-8-135-2022
https://doi.org/10.5194/ascmo-8-135-2022
13 Jun 2022
 | 13 Jun 2022

A multi-method framework for global real-time climate attribution

Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto

Related authors

pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python
Daniel M. Gilford
Geosci. Model Dev., 14, 2351–2369, https://doi.org/10.5194/gmd-14-2351-2021,https://doi.org/10.5194/gmd-14-2351-2021, 2021
Short summary

Related subject area

Climate research
Formally combining different lines of evidence in extreme-event attribution
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024,https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Environmental sensitivity of the Caribbean economic growth rate
Mark R. Jury
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 95–104, https://doi.org/10.5194/ascmo-10-95-2024,https://doi.org/10.5194/ascmo-10-95-2024, 2024
Short summary
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024,https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Changes in the distribution of annual maximum temperatures in Europe
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023,https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary
Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios
Fabian Lehner, Imran Nadeem, and Herbert Formayer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 29–44, https://doi.org/10.5194/ascmo-9-29-2023,https://doi.org/10.5194/ascmo-9-29-2023, 2023
Short summary

Cited articles

Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016. a
Baynton, H. W., Bidwell, J. M., and Beran, D. W.: correspondence: To coin a word, B. Am. Meteorol. Soc., 45, 393–393, https://doi.org/10.1175/1520-0477-45.7.393, 1964. a
Berry, H. L., Bowen, K., and Kjellstrom, T.: Climate change and mental health: A causal pathways framework, Int. J. Public Health, 55, 123–132, https://doi.org/10.1007/s00038-009-0112-0, 2010. a
Byrne, M. P.: Amplified warming of extreme temperatures over tropical land, Nat. Geosci., 14, 837–841, https://doi.org/10.1038/s41561-021-00828-8, 2021. a
Callaghan, M., Schleussner, C.-F., Nath, S., Lejeune, Qu., Knutson, T. R., Reichstein, M., Hansen, G., Theokritoff, E., Andrijevic, M., Brecha, R. J., Hegarty, M., Jones, C., Lee, K., Lucas, A., van Maane, N., Menk, I., Pfleiderer, P., Yesil, B., and Minx, J. C.: Machine learning-based evidence and attribution mapping of 100 000 climate impact studies, Nat. Clim. Change, 11, 966–972, https://doi.org/10.1038/s41558-021-01168-6, 2021. a, b, c
Download
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.