Articles | Volume 8, issue 1
https://doi.org/10.5194/ascmo-8-135-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-8-135-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multi-method framework for global real-time climate attribution
Daniel M. Gilford
CORRESPONDING AUTHOR
Climate Central, Princeton, NJ, USA
Andrew Pershing
Climate Central, Princeton, NJ, USA
Benjamin H. Strauss
Climate Central, Princeton, NJ, USA
Karsten Haustein
Institute for Meteorology, Leipzig University, Leipzig, Germany
Friederike E. L. Otto
Grantham Institute of Climate Change, Imperial College London, UK
Related authors
Daniel M. Gilford
Geosci. Model Dev., 14, 2351–2369, https://doi.org/10.5194/gmd-14-2351-2021, https://doi.org/10.5194/gmd-14-2351-2021, 2021
Short summary
Short summary
Potential intensity (PI) is a tropical cyclone's maximum speed limit given by modeling the storm as a thermal heat engine. pyPI is the first software package fully documenting the PI algorithm and translating it to Python. This study details/validates the underlying PI model and demonstrates its use in tropical cyclone intensity research. pyPI supports open science and transparency in the tropical meteorological community and is ideally suited for ongoing community development and improvement.
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024, https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Short summary
To assess the role of climate change in individual weather events, different lines of evidence need to be combined in order to draw robust conclusions about whether observed changes can be attributed to anthropogenic climate change. Here we present a transparent method, developed over 8 years, to combine such lines of evidence in a single framework and draw conclusions about the overarching role of human-induced climate change in individual weather events.
Rosa Pietroiusti, Inne Vanderkelen, Friederike E. L. Otto, Clair Barnes, Lucy Temple, Mary Akurut, Philippe Bally, Nicole P. M. van Lipzig, and Wim Thiery
Earth Syst. Dynam., 15, 225–264, https://doi.org/10.5194/esd-15-225-2024, https://doi.org/10.5194/esd-15-225-2024, 2024
Short summary
Short summary
Heavy rainfall in eastern Africa between late 2019 and mid 2020 caused devastating floods and landslides and drove the levels of Lake Victoria to a record-breaking maximum in May 2020. In this study, we characterize the spatial extent and impacts of the floods in the Lake Victoria basin and investigate how human-induced climate change influenced the probability and intensity of the record-breaking lake levels and flooding by applying a multi-model extreme event attribution methodology.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Daniel M. Gilford
Geosci. Model Dev., 14, 2351–2369, https://doi.org/10.5194/gmd-14-2351-2021, https://doi.org/10.5194/gmd-14-2351-2021, 2021
Short summary
Short summary
Potential intensity (PI) is a tropical cyclone's maximum speed limit given by modeling the storm as a thermal heat engine. pyPI is the first software package fully documenting the PI algorithm and translating it to Python. This study details/validates the underlying PI model and demonstrates its use in tropical cyclone intensity research. pyPI supports open science and transparency in the tropical meteorological community and is ideally suited for ongoing community development and improvement.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Cited articles
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change
on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016. a
Baynton, H. W., Bidwell, J. M., and Beran, D. W.: correspondence: To coin a word, B. Am. Meteorol. Soc., 45, 393–393, https://doi.org/10.1175/1520-0477-45.7.393, 1964. a
Berry, H. L., Bowen, K., and Kjellstrom, T.: Climate change and mental health:
A causal pathways framework, Int. J. Public Health, 55,
123–132, https://doi.org/10.1007/s00038-009-0112-0, 2010. a
Byrne, M. P.: Amplified warming of extreme temperatures over tropical land,
Nat. Geosci., 14, 837–841, https://doi.org/10.1038/s41561-021-00828-8, 2021. a
Callaghan, M., Schleussner, C.-F., Nath, S., Lejeune, Qu., Knutson, T. R.,
Reichstein, M., Hansen, G., Theokritoff, E., Andrijevic, M., Brecha,
R. J., Hegarty, M., Jones, C., Lee, K., Lucas, A., van Maane, N., Menk,
I., Pfleiderer, P., Yesil, B., and Minx, J. C.: Machine learning-based
evidence and attribution mapping of 100 000 climate impact studies, Nat. Clim. Change, 11, 966–972, https://doi.org/10.1038/s41558-021-01168-6, 2021. a, b, c
Chen, D., Rojas, M., Samset, B., Cobb, K., Diongue Niang, A., Edwards, P.,
Emori, S., Faria, S., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M.,
Mustafa, S., Plattner, G.-K., and Tréguier, A.-M.: Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 1–215, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (last access: 3 June 2022),
2021. a
Chen, Y., Zhou, B., Zhai, P., and Moufouma-Okia, W.: Half-a-Degree Matters for
Reducing and Delaying Global Land Exposure to Combined Daytime-Nighttime Hot
Extremes, Earths Future, 7, 953–966, https://doi.org/10.1029/2019EF001202, 2019. a, b
Coles, S.: An introduction to statistical modeling of extreme values, Springer
Series in Statistics, Springer-Verlag, London, https://doi.org/10.1007/978-1-4471-3675-0, 2001. a, b
Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends, Q. J. Roy.
Meteor. Soc., 140, 1935–1944, https://doi.org/10.1002/qj.2297, 2014. a
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the
role of natural variability in future North American climate, Nat. Clim. Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012. a
Diffenbaugh, N. S. and Ashfaq, M.: Intensification of hot extremes in the
United States, Geophys. Res. Lett., 37, 1–5,
https://doi.org/10.1029/2010GL043888, 2010. a
Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L.,
Touma, D., Charland, A., Liu, Y., Haugen, M., Tsiang, M., and Rajaratnam, B.:
Quantifying the influence of global warming on unprecedented extreme climate
events, P. Natl. Acad. Sci. USA, 114, 4881–4886, https://doi.org/10.1073/pnas.1618082114, 2017. a, b
Donat, M. G. and Alexander, L. V.: The shifting probability distribution of
global daytime and night-time temperatures, Geophys. Res. Lett.,
39, L14707, https://doi.org/10.1029/2012GL052459, 2012. a
Eden, J. M., Wolter, K., Otto, F. E., and Van Oldenborgh, G. J.:
Multi-method attribution analysis of extreme precipitation in Boulder,
Colorado, Environ. Res. Lett., 11, 124009,
https://doi.org/10.1088/1748-9326/11/12/124009, 2016. a
Efron, B. and Gong, G.: A Leisurely Look at the Bootstrap, the Jackknife, and
Cross-Validation, The American Statistician, 37, 36, https://doi.org/10.2307/2685844, 1983. a
Emanuel, K. A., Neelin, J. D., and Bretherton, C. S.: On large‐scale
circulations in convecting atmospheres, Q. J. Roy. Meteor. Soc., 120, 1111–1143, https://doi.org/10.1002/qj.49712051902, 1994. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Eyring, V., Gillet, N., Achuta Rao, K., Barimalala, R., Barreiro Parrillo, M.,
Bellouin, N., Cassou, C., Durack, P., Kosaka, Y., McGregor, S., Min, S.,
Morgenstern, O., and Sun, Y.: Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (last access: 3 June 2022),
2021. a
Findell, K. L., Berg, A., Gentine, P., Krasting, J. P., Lintner, B. R.,
Malyshev, S., Santanello, J. A., and Shevliakova, E.: The impact of
anthropogenic land use and land cover change on regional climate extremes,
Nat. Commun., 8, 1–9, https://doi.org/10.1038/s41467-017-01038-w, 2017. a
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global occurrence
of heavy-precipitation and high-temperature extremes, Nat. Clim. Change,
5, 560–564, https://doi.org/10.1038/nclimate2617, 2015. a
Frame, D., Joshi, M., Hawkins, E., Harrington, L. J., and De Roiste, M.:
Population-based emergence of unfamiliar climates, Nat. Clim. Change,
7, 407–411, https://doi.org/10.1038/nclimate3297, 2017. a, b
Gilford, D.: climatecentral/gilford22_attframework: Release supporting the publication of “A multi-method framework for global real-time climate attribution” (v0.1), Zenodo [code], https://doi.org/10.5281/zenodo.6624712, 2022. a
Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and
Russell, G.: Climate impact of increasing atmospheric carbon dioxide,
Science, 213, 957–966, https://doi.org/10.1126/science.213.4511.957, 1981. a
Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russell,
G., and Stone, P.: Global climate changes as forecast by Goddard Institute
for Space Studies three-dimensional model, J. Geophys. Res., 93, 9341–9364, https://doi.org/10.1029/JD093iD08p09341, 1988. a
Hansen, J., Sato, M., and Ruedy, R.: Perception of climate change,
P. Natl. Acad. Sci. USA, 109, E2415–E2423,
https://doi.org/10.1073/pnas.1205276109, 2012. a
Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys. Res. Lett., 39, L01702, https://doi.org/10.1029/2011GL050087, 2012. a
Huang, W. K., Stein, M. L., McInerney, D. J., Sun, S., and Moyer, E. J.: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions, Adv. Stat. Clim. Meteorol. Oceanogr., 2, 79–103, https://doi.org/10.5194/ascmo-2-79-2016, 2016. a
Huber, M. and Knutti, R.: Anthropogenic and natural warming inferred from
changes in Earth's energy balance, Nat. Geosci., 5, 31–36,
https://doi.org/10.1038/ngeo1327, 2012. a
Jézéquel, A., Dépoues, V., Guillemot, H., Trolliet, M.,
Vanderlinden, J.-P., and Yiou, P.: Behind the veil of extreme event
attribution, Clim. Change, 149, 367–383, https://doi.org/10.1007/s10584-018-2252-9,
2018. a, b
Jones, G. S., Lockwood, M., and Stott, P. A.: What influence will future solar
activity changes over the 21st century have on projected global near-surface
temperature changes?, J. Geophys. Res.-Atmos., 117,
1–13, https://doi.org/10.1029/2011JD017013, 2012. a
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer,
P. S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a multi-method reconstruction approach, Scientific Data, 7, 1–13,
https://doi.org/10.1038/s41597-020-0530-7, 2020. a
Kew, S. F., Philip, S. Y., Van Oldenborgh, G. J., Otto, F. E., Vautard, R.,
and Van Der Schrier, G.: The exceptional summer heat wave in southern
Europe 2017, B. Am. Meteorol. Soc., 100, S49–S53,
https://doi.org/10.1175/BAMS-D-18-0109.1, 2019. a, b
King, A. D. and Harrington, L. J.: The Inequality of Climate Change From 1.5
to 2 ∘C of Global Warming, Geophys. Res. Lett., 45, 5030–5033,
https://doi.org/10.1029/2018GL078430, 2018. a
Klein, C., Jackson, L. S., Parker, D. J., Marsham, J. H., Taylor, C. M.,
Rowell, D. P., Guichard, F., Vischel, T., Famien, A. M., and Diedhiou, A.:
Combining CMIP data with a regional convection-permitting model and
observations to project extreme rainfall under climate change, Environ. Res. Lett., 16, 104023, https://doi.org/10.1088/1748-9326/ac26f1, 2021. a
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J.,
Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones
and climate change assessment, B. Am. Meteorol. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019. a
Lange, S.: ISIMIP2b Bias-Correction Code, Zenodo [code], https://doi.org/10.5281/zenodo.1069050, 2017. a
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019. a, b, c
Lewis, S. C. and King, A. D.: Evolution of mean, variance and extremes in 21st
century temperatures, Weather and Climate Extremes, 15, 1–10,
https://doi.org/10.1016/j.wace.2016.11.002, 2017. a
Mahlstein, I., Knutti, R., Solomon, S., and Portmann, R. W.: Early onset of
significant local warming in low latitude countries, Environ. Res.
Lett., 6, 034009, https://doi.org/10.1088/1748-9326/6/3/034009, 2011. a
Mahlstein, I., Hegerl, G., and Solomon, S.: Emerging local warming signals in
observational data, Geophys. Res. Lett., 39, L21711,
https://doi.org/10.1029/2012GL053952, 2012. a
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla,
P., Pirani, A. P., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S.,
Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock,
T., Tignor, M., and Waterfield, T.: Cambridge, United Kingdom and New York,
NY, USA, https://www.ipcc.ch/sr15/ (last access: 3 June 2022), 2018. a, b
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S.,
Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy,
E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B.: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (last access: 3 June 2022),
2021. a, b
Mitchell, D.: Climate attribution of heat mortality, Nat. Clim. Change,
11, 467–468, https://doi.org/10.1038/s41558-021-01049-y, 2021. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick,
R. E., Dunn, R. J., Osborn, T. J., Jones, P. D., and Simpson, I. R.: An
Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5
Data Set, J. Geophys. Res.-Atmos., 126, 1–28,
https://doi.org/10.1029/2019JD032361, 2021. a, b
Mueller, N. D., Butler, E. E., Mckinnon, K. A., Rhines, A., Tingley, M.,
Holbrook, N. M., and Huybers, P.: Cooling of US Midwest summer temperature
extremes from cropland intensification, Nat. Clim. Change, 6, 317–322,
https://doi.org/10.1038/nclimate2825, 2016a. a
Mueller, N. D., Butler, E. E., Mckinnon, K. A., Rhines, A., Tingley, M.,
Holbrook, N. M., and Huybers, P.: Cooling of US Midwest summer temperature
extremes from cropland intensification, Nat. Clim. Change, 6, 317–322,
https://doi.org/10.1038/nclimate2825, 2016b. a
Muller, R. A., Rohde, R., Jacobsen, R., Muller, E., and Wickham, C.: A New
Estimate of the Average Earth Surface Land Temperature Spanning 1753 to
2011, Geoinformatics and Geostatistics: An Overview, 01, 1–7,
https://doi.org/10.4172/2327-4581.1000101, 2013. a
Organization, W. M.: Guidelines on the Calculation of Climate Normals, Tech. Rep. 1203, World Meteorological Organization,
https://library.wmo.int/doc_num.php?explnum_id=4166 (last access: 3 June 2022), 2017. a
Otto, F. E.: Attribution of Weather and Climate Events, Annu. Rev. Env. Resour., 42, 627–646,
https://doi.org/10.1146/annurev-environ-102016-060847, 2017. a
Otto, F. E., Philip, S., Kew, S., Li, S., King, A., and Cullen, H.:
Attributing high-impact extreme events across timescales – a case study of four different types of events, Clim. Change, 149, 399–412,
https://doi.org/10.1007/s10584-018-2258-3, 2018. a, b, c, d
Otto, F. E., Harrington, L., Schmitt, K., Philip, S., Kew, S., van Oldenborgh,
G. J., Singh, R., Kimutai, J., and Wolski, P.: Challenges to understanding
extreme weather changes in lower income countries, B. Am.
Meteorol. Soc., 101, E1851–E1860, https://doi.org/10.1175/BAMS-D-19-0317.1,
2020. a, b, c
Perkins-Kirkpatrick, S. E., Stone, D. A., Mitchell, D. M., Rosier, S., King,
A. D., Lo, Y. T., Pastor-Paz, J., Frame, D., and Wehner, M.: On the
attribution of the impacts of extreme weather events to anthropogenic climate
change, Environ. Res. Lett., 17, 024009, https://doi.org/10.1088/1748-9326/ac44c8,
2022. a
Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Understanding the regional
pattern of projected future changes in extreme precipitation, Nat. Clim.
Change, 7, 423–427, https://doi.org/10.1038/nclimate3287, 2017. a, b
Philip, S., Kew, S. F., van Oldenborgh, G. J., Aalbers, E., Vautard, R., Otto,
F., Haustein, K., Habets, F., and Singh, R.: Validation of a rapid
attribution of the May/June 2016 flood-inducing precipitation in France to
climate change, J. Hydrometeorol., 19, 1881–1898,
https://doi.org/10.1175/JHM-D-18-0074.1, 2018a. a
Philip, S., Kew, S. F., van Oldenborgh, G. J., Otto, F., O'Keefe, S., Haustein,
K., King, A., Zegeye, A., Eshetu, Z., Hailemariam, K., Singh, R., Jjemba, E.,
Funk, C., and Cullen, H.: Attribution Analysis of the Ethiopian Drought of
2015, J. Climate, 31, 2465–2486, https://doi.org/10.1175/JCLI-D-17-0274.1,
2018b. a
Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: A protocol for probabilistic extreme event attribution analyses, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, 2020. a, b, c
Philip, S. Y., Kew, S. F., Oldenborgh, G. J. V., Yang, W., Vecchi, G. A.,
Anslow, F. S., Li, S., Seneviratne, S. I., Luu, L. N., Arrighi, J., Singh,
R., Aalst, V., Hauser, M., Schumacher, D. L., Marghidan, C. P., Ebi, K. L.,
Vautard, R., Tradowsky, J., Coumou, D., Lehner, F., Rodell, C., Stull, R.,
Howard, R., Gillett, N., and Otto, F. E. L.: Rapid attribution analysis of
the extraordinary heatwave on the Pacific Coast of the US and Canada June
2021, Tech. Rep. June, World Weather Attribution, 37 pp., https://www.worldweatherattribution.org/wp-content/uploads/NW-US-extreme-heat-2021-scientific-report-WWA.pdf (last access: 3 June 2022),
2021. a, b, c, d, e
Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and
Haerter, J.: Statistical Bias Correction of Global Simulated Daily
Precipitation and Temperature for the Application of Hydrological Models,
J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024,
2010. a
Rahmstorf, S. and Coumou, D.: Increase of extreme events in a warming world, P. Natl. Acad. Sci., 108, 17905–17909, https://doi.org/10.1073/pnas.1101766108, 2011. a
Ranasinghe, R., Ruane, A., Vautard, R., Arnell, N., Coppola, E., Crus, F. A.,
Dessai, S., Islam, A. S., Rahimi, M., Ruiz Carrascal, D., Sillman, J., Sylla,
M. B., Tebaldi, C., Wang, W., and Zaaboul, R.: Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1767–1926, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (last access: 3 June 2022),
2021. a
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5-A scenario of comparatively high
greenhouse gas emissions, Clim. Change, 109, 33–57,
https://doi.org/10.1007/s10584-011-0149-y, 2011. a
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020. a
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., and Mosher, S.: Berkeley
Earth Temperature Averaging Process, Geoinformatics and Geostatistics: An
Overview, 1, 2, https://doi.org/10.4172/2327-4581.1000103, 2013. a
Santer, B. D., Po-Chedley, S., Zelinka, M. D., Cvijanovic, I., Bonfils, C.,
Durack, P. J., Fu, Q., Kiehl, J., Mears, C., Painter, J., Pallotta, G.,
Solomon, S., Wentz, F. J., and Zou, C.-Z.: Human influence on the seasonal
cycle of tropospheric temperature, Science, 361, eaas8806,
https://doi.org/10.1126/science.aas8806, 2018. a
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C.,
Liniger, M. A., and Appenzeller, C.: The role of increasing temperature
variability in European summer heatwaves, Nature, 427, 332–336,
https://doi.org/10.1038/nature02300, 2004. a
Seneviratne, S., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A.,
Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satho,
M., Vicente-Serrano, S., Wehner, M., and Zhou, B.: Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (last access: 3 June 2022),
2021. a, b, c
Seneviratne, S. I., Wilhelm, M., Stanelle, T., Van Den Hurk, B., Hagemann,
S., Berg, A., Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen,
M., Ducharne, A., Dufresne, J. L., Findell, K. L., Ghattas, J., Lawrence,
D. M., Malyshev, S., Rummukainen, M., and Smith, B.: Impact of soil
moisture-climate feedbacks on CMIP5 projections: First results from the
GLACE-CMIP5 experiment, Geophys. Res. Lett., 40, 5212–5217,
https://doi.org/10.1002/grl.50956, 2013. a
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R., and Wilby, R. L.:
Allowable CO2 emissions based on regional and impact-related climate
targets, Nature, 529, 477–483, https://doi.org/10.1038/nature16542, 2016. a, b
Shen, S. S., Gurung, A. B., Oh, H. S., Shu, T., and Easterling, D. R.: The
twentieth century contiguous US temperature changes indicated by daily data
and higher statistical moments, Clim. Change, 109, 287–317,
https://doi.org/10.1007/s10584-011-0033-9, 2011. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate
change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/NGEO2253,
2014. a
Sherwood, S. C. and Huber, M.: An adaptability limit to climate change due to
heat stress, P. Natl. Acad. Sci. USA, 107, 9552–9555, https://doi.org/10.1073/pnas.0913352107, 2010. a
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 2, Future
climate projections, J. Geophys. Res.-Atmos., 118,
2473–2493, https://doi.org/10.1002/jgrd.50188, 2013. a
Sippel, S., Otto, F. E., Flach, M., and Van Oldenborgh, G. J.: 11. The role
of anthropogenic warming in 2015 central European heat waves, B. Am. Meteorol. Soc., 97, S51–S56, https://doi.org/10.1175/BAMS-D-16-0150.1, 2016. a
Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E., and Knutti, R.: Climate change now detectable from any single day of weather at global
scale, Nat. Clim. Change, 10, 35–41, https://doi.org/10.1038/s41558-019-0666-7,
2020. a, b
Sippel, S., Meinshausen, N., Székely, E., Fischer, E., Pendergrass, A. G.,
Lehner, F., and Knutti, R.: Robust detection of forced warming in the
presence of potentially large climate variability, Sci. Adv., 7,
eabh4429, https://doi.org/10.1126/sciadv.abh4429, 2021. a, b
Stone, D. A., Rosier, S. M., and Frame, D. J.: The question of life, the
universe and event attribution, Nat. Clim. Change, 11, 276–278,
https://doi.org/10.1038/s41558-021-01012-x, 2021. a
Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the
European heatwave of 2003, Nature, 432, 610–614, https://doi.org/10.1038/nature03089, 2004. a
Strauss, B. H., Orton, P. M., Bittermann, K., Buchanan, M. K., Gilford, D. M.,
Kopp, R. E., Kulp, S., Massey, C., de Moel, H., and Vinogradov, S.: Economic
damages from Hurricane Sandy attributable to sea level rise caused by
anthropogenic climate change, Nat. Commun., 12, 15,
https://doi.org/10.1038/s41467-021-22838-1, 2021. a, b, c
Sullivan, A. and White, D. D.: An assessment of public perceptions of climate
change risk in three western U.S. Cities, Weather Clim. Soc., 11, 449–463, https://doi.org/10.1175/WCAS-D-18-0068.1, 2019. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b
Tebaldi, C. and Wehner, M. F.: Benefits of mitigation for future heat extremes
under RCP4.5 compared to RCP8.5, Clim. Change, 146, 349–361,
https://doi.org/10.1007/s10584-016-1605-5, 2018. a
Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., and
Seneviratne, S. I.: Present-day irrigation mitigates heat extremes, J. Geophys. Res., 122, 1403–1422, https://doi.org/10.1002/2016JD025740, 2017. a
Thiery, W., Visser, A. J., Fischer, E. M., Hauser, M., Hirsch, A. L., Lawrence,
D. M., Lejeune, Q., Davin, E. L., and Seneviratne, S. I.: Warming of hot
extremes alleviated by expanding irrigation, Nat. Commun., 11,
1–7, https://doi.org/10.1038/s41467-019-14075-4, 2020. a
Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G.: Attribution of climate
extreme events, Nat. Clim. Change, 5, 725–730,
https://doi.org/10.1038/nclimate2657, 2015. a, b, c
van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Philip, S., Vecchi, G. A., Singh, R. K., Arrighi, J., and Cullen, H.: Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change, Hydrol. Earth Syst. Sci., 21, 897–921, https://doi.org/10.5194/hess-21-897-2017, 2017. a
Van Oldenborgh, G. J., Van Der Wiel, K., Sebastian, A., Singh, R., Arrighi,
J., Otto, F., Haustein, K., Li, S., Vecchi, G., and Cullen, H.: Attribution
of extreme rainfall from Hurricane Harvey, August 2017, Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2, 2017. a, b, c
van Oldenborgh, G. J., Philip, S., Kew, S., van Weele, M., Uhe, P., Otto, F., Singh, R., Pai, I., Cullen, H., and AchutaRao, K.: Extreme heat in India and anthropogenic climate change, Nat. Hazards Earth Syst. Sci., 18, 365–381, https://doi.org/10.5194/nhess-18-365-2018, 2018. a
Vargas Zeppetello, L. R. and Battisti, D. S.: Projected Increases in Monthly
Midlatitude Summertime Temperature Variance Over Land Are Driven by Local
Thermodynamics, Geophys. Res. Lett., 47, e2020GL090197,
https://doi.org/10.1029/2020GL090197, 2020. a
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R.,
Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R.,
Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa,
P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru,
H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A.,
Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka,
A., Michelozzi, P., de'Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H.,
Valencia, C. D. L. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S.,
Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J.,
Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C.,
Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong,
B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V.,
Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The
burden of heat-related mortality attributable to recent human-induced climate change, Nat. Clim. Change, 11, 492–500,
https://doi.org/10.1038/s41558-021-01058-x, 2021.
a
Vogel, M. M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., van den Hurk,
B. J., and Seneviratne, S. I.: Regional amplification of projected changes
in extreme temperatures strongly controlled by soil moisture-temperature
feedbacks, Geophys. Res. Lett., 44, 1511–1519,
https://doi.org/10.1002/2016GL071235, 2017. a, b
Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W., and Zhang,
B.: Changing Lengths of the Four Seasons by Global Warming, Geophys. Res. Lett., 48, e2020GL091753,
https://doi.org/10.1029/2020GL091753, 2021. a
Wehner, M., Stone, D., Shiogama, H., Wolski, P., Ciavarella, A., Christidis,
N., and Krishnan, H.: Early 21st century anthropogenic changes in extremely
hot days as simulated by the C20C+ detection and attribution multi-model
ensemble, Weather and Climate Extremes, 20, 1–8,
https://doi.org/10.1016/j.wace.2018.03.001, 2018. a
Williams, I. N., Pierrehumbert, R. T., and Huber, M.: Global warming,
convective threshold and false thermostats, Geophys. Res. Lett.,
36, L21805, https://doi.org/10.1029/2009GL039849, 2009. a
Zscheischler, J., Westra, S., Van Den Hurk, B. J., Seneviratne, S. I., Ward,
P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X.: Future climate risk from compound events, Nat. Clim. Change,
8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Zwiers, F. W., Zhang, X., and Feng, Y.: Anthropogenic influence on long return
period daily temperature extremes at regional scales, J. Climate,
24, 881–892, https://doi.org/10.1175/2010JCLI3908.1, 2011. a
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.
We developed a framework to produce global real-time estimates of how human-caused climate...