Articles | Volume 8, issue 1
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, 2022
https://doi.org/10.5194/ascmo-8-135-2022
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, 2022
https://doi.org/10.5194/ascmo-8-135-2022
 
13 Jun 2022
13 Jun 2022

A multi-method framework for global real-time climate attribution

Daniel M. Gilford et al.

Related authors

pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python
Daniel M. Gilford
Geosci. Model Dev., 14, 2351–2369, https://doi.org/10.5194/gmd-14-2351-2021,https://doi.org/10.5194/gmd-14-2351-2021, 2021
Short summary

Related subject area

Climate research
Comparing climate time series – Part 4: Annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 187–203, https://doi.org/10.5194/ascmo-8-187-2022,https://doi.org/10.5194/ascmo-8-187-2022, 2022
Short summary
Statistical reconstruction of European winter snowfall in reanalysis and climate models based on air temperature and total precipitation
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022,https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
Analysis of the evolution of parametric drivers of high-end sea-level hazards
Alana Hough and Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 117–134, https://doi.org/10.5194/ascmo-8-117-2022,https://doi.org/10.5194/ascmo-8-117-2022, 2022
Short summary
Comparing climate time series – Part 3: Discriminant analysis
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 97–115, https://doi.org/10.5194/ascmo-8-97-2022,https://doi.org/10.5194/ascmo-8-97-2022, 2022
Short summary
Spatial heterogeneity in rain-bearing winds, seasonality and rainfall variability in southern Africa's winter rainfall zone
Willem Stefaan Conradie, Piotr Wolski, and Bruce Charles Hewitson
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 31–62, https://doi.org/10.5194/ascmo-8-31-2022,https://doi.org/10.5194/ascmo-8-31-2022, 2022
Short summary

Cited articles

Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016. a
Baynton, H. W., Bidwell, J. M., and Beran, D. W.: correspondence: To coin a word, B. Am. Meteorol. Soc., 45, 393–393, https://doi.org/10.1175/1520-0477-45.7.393, 1964. a
Berry, H. L., Bowen, K., and Kjellstrom, T.: Climate change and mental health: A causal pathways framework, Int. J. Public Health, 55, 123–132, https://doi.org/10.1007/s00038-009-0112-0, 2010. a
Byrne, M. P.: Amplified warming of extreme temperatures over tropical land, Nat. Geosci., 14, 837–841, https://doi.org/10.1038/s41561-021-00828-8, 2021. a
Callaghan, M., Schleussner, C.-F., Nath, S., Lejeune, Qu., Knutson, T. R., Reichstein, M., Hansen, G., Theokritoff, E., Andrijevic, M., Brecha, R. J., Hegarty, M., Jones, C., Lee, K., Lucas, A., van Maane, N., Menk, I., Pfleiderer, P., Yesil, B., and Minx, J. C.: Machine learning-based evidence and attribution mapping of 100 000 climate impact studies, Nat. Clim. Change, 11, 966–972, https://doi.org/10.1038/s41558-021-01168-6, 2021. a, b, c
Download
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.