Articles | Volume 8, issue 2
https://doi.org/10.5194/ascmo-8-225-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-8-225-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory
Katarina Lashgari
CORRESPONDING AUTHOR
Department of Mathematics, Division of Mathematical Statistics, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
previously published under the name Ekaterina Fetisova
Gudrun Brattström
Department of Mathematics, Division of Mathematical Statistics, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Anders Moberg
Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Rolf Sundberg
Department of Mathematics, Division of Mathematical Statistics, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Related authors
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022, https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary
Short summary
The performance of a new statistical framework containing various structural equation modelling (SEM) models is evaluated in a pseudo-proxy experiment in comparison with the performance of statistical models used in many detection and attribution studies. Each statistical model was fitted to seven continental-scale regional temperature data sets. The results indicated the SEM specification is the most appropriate for describing the underlying latent structure of the simulated data analysed.
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022, https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary
Short summary
The performance of a new statistical framework containing various structural equation modelling (SEM) models is evaluated in a pseudo-proxy experiment in comparison with the performance of statistical models used in many detection and attribution studies. Each statistical model was fitted to seven continental-scale regional temperature data sets. The results indicated the SEM specification is the most appropriate for describing the underlying latent structure of the simulated data analysed.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
A. Moberg, R. Sundberg, H. Grudd, and A. Hind
Clim. Past, 11, 425–448, https://doi.org/10.5194/cp-11-425-2015, https://doi.org/10.5194/cp-11-425-2015, 2015
Short summary
Short summary
Experiments with climate models can help to understand causes of past climate changes. We develop a statistical framework for comparing data from simulation experiments with temperature reconstructions for the last millennium. A combination of several external factors is found to explain a significant part of the observed variations, but our selection of data cannot tell which of two alternative choices of past solar forcing gives the best fit between simulations and reconstructions.
Related subject area
Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Comparison of climate time series – Part 5: Multivariate annual cycles
Regridding uncertainty for statistical downscaling of solar radiation
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Statistical modeling of the space–time relation between wind and significant wave height
Modeling general circulation model bias via a combination of localized regression and quantile mapping methods
Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment
A conditional approach for joint estimation of wind speed and direction under future climates
Comparing climate time series – Part 2: A multivariate test
Forecast score distributions with imperfect observations
Novel measures for summarizing high-resolution forecast performance
Copula approach for simulated damages caused by landfalling US hurricanes
Nonstationary extreme value analysis for event attribution combining climate models and observations
Comparing climate time series – Part 1: Univariate test
A statistical approach to fast nowcasting of lightning potential fields
Spatial trend analysis of gridded temperature data at varying spatial scales
An improved projection of climate observations for detection and attribution
Bivariate Gaussian models for wind vectors in a distributional regression framework
Fitting a stochastic fire spread model to data
Influence of initial ocean conditions on temperature and precipitation in a coupled climate model's solution
NWP-based lightning prediction using flexible count data regression
An integration and assessment of multiple covariates of nonstationary storm surge statistical behavior by Bayesian model averaging
Probabilistic evaluation of competing climate models
Assessing NARCCAP climate model effects using spatial confidence regions
Generalised block bootstrap and its use in meteorology
Estimating trends in the global mean temperature record
Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression
Analysis of variability of tropical Pacific sea surface temperatures
Evaluating NARCCAP model performance for frequencies of severe-storm environments
Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions
A comparison of two methods for detecting abrupt changes in the variance of climatic time series
Calibrating regionally downscaled precipitation over Norway through quantile-based approaches
Comparison of hidden and observed regime-switching autoregressive models for (u, v)-components of wind fields in the northeastern Atlantic
Autoregressive spatially varying coefficients model for predicting daily PM2.5 using VIIRS satellite AOT
Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies
Joint inference of misaligned irregular time series with application to Greenland ice core data
Simulation of future climate under changing temporal covariance structures
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024, https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Short summary
We introduce a new statistical framework to estimate the change in subsurface ocean temperature following the passage of a tropical cyclone (TC). Our approach combines tools handling seasonal variations and spatial dependence in the data, culminating in a three-dimensional characterization of the interaction between TCs and the ocean. Our work allows us to obtain new scientific insights, and we expect it to be generally applicable to studying the impact of TCs on other ocean phenomena.
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024, https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Short summary
In hydrology, the probability distributions are used to determine the probability of occurrence of rainfall events. In this study, two different methods for modeling rainfall time characteristics have been applied: a direct method and an indirect method that make it possible to relax the assumptions of the renewal process. The analysis was extended to two additional time variables that may be of great interest for practical hydrological applications: wet chains and dry chains.
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024, https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Short summary
This paper introduces a method to assess whether two data sets come from the same source. Current methods do not adequately consider spatial and temporal correlations and their annual cycles in a comprehensive test. This method addresses that gap, thereby providing a new and rigorous tool for evaluating the realism of climate simulations and measuring changes in variability over time.
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023, https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Short summary
To ensure photovoltaic (PV) plants last, we need to understand how climate change affects solar radiation. Climate models help predict future radiation for PV plants, but there is often uncertainty. We explore this uncertainty and its impact on building PV plants. We highlight the importance of considering uncertainties for accurate planning and management. A California case study shows a practical application for the solar industry.
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023, https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary
Short summary
The intensities of recent heatwave events, such as the record-breaking heatwave in early June 2021 in the Pacific Northwest area, are substantially altered by climate change. We further quantify the contribution of the local weather situation and the land surface conditions with a statistical model suited for extreme data. Based on this method, we can answer
what ifquestions, such as estimating the change in the 2021 heatwave temperature if it happened in a world without climate change.
Said Obakrim, Pierre Ailliot, Valérie Monbet, and Nicolas Raillard
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 67–81, https://doi.org/10.5194/ascmo-9-67-2023, https://doi.org/10.5194/ascmo-9-67-2023, 2023
Short summary
Short summary
Ocean wave climate has a significant impact on human activities, and its understanding is of socioeconomic and environmental importance. In this study, we propose a statistical model that predicts wave heights in a location in the Bay of Biscay. The proposed method allows us to understand the spatiotemporal relationship between wind and waves and predicts well both wind seas and swells.
Benjamin James Washington, Lynne Seymour, and Thomas L. Mote
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 1–28, https://doi.org/10.5194/ascmo-9-1-2023, https://doi.org/10.5194/ascmo-9-1-2023, 2023
Short summary
Short summary
We develop new methodology to statistically model known bias in general atmospheric circulation models. We focus on Puerto Rico specifically because of other important ongoing and long-term ecological and environmental research taking place there. Our methods work even in the presence of Puerto Rico's broken climate record. With our methods, we find that climate change will not only favor a warmer and wetter climate in Puerto Rico, but also increase the frequency of extreme rainfall events.
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022, https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary
Short summary
The performance of a new statistical framework containing various structural equation modelling (SEM) models is evaluated in a pseudo-proxy experiment in comparison with the performance of statistical models used in many detection and attribution studies. Each statistical model was fitted to seven continental-scale regional temperature data sets. The results indicated the SEM specification is the most appropriate for describing the underlying latent structure of the simulated data analysed.
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, https://doi.org/10.5194/ascmo-8-205-2022, https://doi.org/10.5194/ascmo-8-205-2022, 2022
Short summary
Short summary
We study wind conditions and their potential future changes across the U.S. via a statistical conditional framework. We conclude that changes between historical and future wind directions are small, but wind speeds are generally weakened in the projected period, with some locations being intensified. Moreover, winter wind speeds are projected to decrease in the northwest, Colorado, and the northern Great Plains (GP), while summer wind speeds over the southern GP slightly increase in the future.
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 73–85, https://doi.org/10.5194/ascmo-7-73-2021, https://doi.org/10.5194/ascmo-7-73-2021, 2021
Short summary
Short summary
After a new climate model is constructed, a natural question is whether it generates realistic simulations. Here,
realisticdoes not mean that the detailed patterns on a particular day are correct, but rather that the statistics over many years are realistic. Past approaches to answering this question often neglect correlations in space and time. This paper proposes a method for answering this question that accounts for correlations in space and time.
Julie Bessac and Philippe Naveau
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 53–71, https://doi.org/10.5194/ascmo-7-53-2021, https://doi.org/10.5194/ascmo-7-53-2021, 2021
Short summary
Short summary
We propose a new forecast evaluation scheme in the context of models that incorporate errors of the verification data. We rely on existing scoring rules and incorporate uncertainty and error of the verification data through a hidden variable and the conditional expectation of scores. By considering scores to be random variables, one can access the entire range of their distribution and illustrate that the commonly used mean score can be a misleading representative of the distribution.
Eric Gilleland
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 13–34, https://doi.org/10.5194/ascmo-7-13-2021, https://doi.org/10.5194/ascmo-7-13-2021, 2021
Short summary
Short summary
Verifying high-resolution weather forecasts has become increasingly complicated,
and simple, easy-to-understand summary measures are a good alternative. Recent work has demonstrated some common pitfalls with many such summaries. Here, new summary measures are introduced that do not suffer from these drawbacks, while still providing meaningful information.
Thomas Patrick Leahy
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 1–11, https://doi.org/10.5194/ascmo-7-1-2021, https://doi.org/10.5194/ascmo-7-1-2021, 2021
Short summary
Short summary
This study looked at estimating damages caused by hurricanes in the United States. It assessed the relationship between the maximum wind speed at landfall and the resulting damage caused. The study found that the complex processes that determine the size of the damages inflicted could be estimated using this simple relationship. This work could be used to examine how often extreme damage events are likely to occur and the impact of stronger hurricane winds on the US Atlantic and Gulf coasts.
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020, https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Short summary
We have developed a new statistical method to describe how a severe weather event, such as a heat wave, may have been influenced by climate change. Our method incorporates both observations and data from various climate models to reflect climate model uncertainty. Our results show that both the probability and the intensity of the French July 2019 heatwave have increased significantly in response to human influence. We find that this heat wave might not have been possible without climate change.
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 159–175, https://doi.org/10.5194/ascmo-6-159-2020, https://doi.org/10.5194/ascmo-6-159-2020, 2020
Short summary
Short summary
Scientists often are confronted with the question of whether two time series are statistically distinguishable. This paper proposes a test for answering this question. The basic idea is to fit each time series to a time series model and then test whether the parameters in that model are equal. If a difference is detected, then new ways of visualizing those differences are proposed, including a clustering technique and a method based on optimal initial conditions.
Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 79–90, https://doi.org/10.5194/ascmo-6-79-2020, https://doi.org/10.5194/ascmo-6-79-2020, 2020
Short summary
Short summary
Very short-term forecasting, called nowcasting, is used to monitor storms that pose a significant threat to people and infrastructure. These threats could include lightning strikes, hail, heavy precipitation, strong winds, and possible tornados. This paper proposes a fast approach to nowcasting lightning threats using simple statistical methods. The proposed model results in fast nowcasts that are more accurate than a competitive, computationally expensive, approach.
Ola Haug, Thordis L. Thorarinsdottir, Sigrunn H. Sørbye, and Christian L. E. Franzke
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 1–12, https://doi.org/10.5194/ascmo-6-1-2020, https://doi.org/10.5194/ascmo-6-1-2020, 2020
Short summary
Short summary
Trends in gridded temperature data are commonly assessed independently for each grid cell, ignoring spatial coherencies. This may severely affect the interpretation of the results. This article proposes a space–time model for temperatures that allows for joint assessments of the trend across locations. In a case study of summer season trends in Europe, it is found that the region with a significant trend under spatial coherency is vastly different from that under independent assessments.
Alexis Hannart
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 161–171, https://doi.org/10.5194/ascmo-5-161-2019, https://doi.org/10.5194/ascmo-5-161-2019, 2019
Short summary
Short summary
In climate change attribution studies, one often seeks to maximize a signal-to-noise ratio, where the
signalis the anthropogenic response and the
noiseis climate variability. A solution commonly used in D&A studies thus far consists of projecting the signal on the subspace spanned by the leading eigenvectors of climate variability. Here I show that this approach is vastly suboptimal – in fact, it leads instead to maximizing the noise-to-signal ratio. I then describe an improved solution.
Moritz N. Lang, Georg J. Mayr, Reto Stauffer, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132, https://doi.org/10.5194/ascmo-5-115-2019, https://doi.org/10.5194/ascmo-5-115-2019, 2019
Short summary
Short summary
Accurate wind forecasts are of great importance for decision-making processes in today's society. This work presents a novel probabilistic post-processing method for wind vector forecasts employing a bivariate Gaussian response distribution. To capture a possible mismatch between the predicted and observed wind direction caused by location-specific properties, the approach incorporates a smooth rotation of the wind direction conditional on the season and the forecasted ensemble wind direction.
X. Joey Wang, John R. J. Thompson, W. John Braun, and Douglas G. Woolford
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 57–66, https://doi.org/10.5194/ascmo-5-57-2019, https://doi.org/10.5194/ascmo-5-57-2019, 2019
Short summary
Short summary
This paper presents the analysis of data from small-scale laboratory experimental smouldering fires that were digitally video-recorded. The video images of these fires bear a resemblance to remotely sensed images of wildfires and provide an opportunity to fit and assess a spatial model for fire spread that attempts to account for uncertainty in fire growth. We found that the fitting method is feasible, and the spatial model provides a suitable mathematical for the fire spread process.
Robin Tokmakian and Peter Challenor
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 17–35, https://doi.org/10.5194/ascmo-5-17-2019, https://doi.org/10.5194/ascmo-5-17-2019, 2019
Short summary
Short summary
As an example of how to robustly determine climate model uncertainty, the paper describes an experiment that perturbs the initial conditions for the ocean's temperature of a climate model. A total of 30 perturbed simulations are used (via an emulator) to estimate spatial uncertainties for temperature and precipitation fields. We also examined (using maximum covariance analysis) how ocean temperatures affect air temperatures and precipitation over land and the importance of feedback processes.
Thorsten Simon, Georg J. Mayr, Nikolaus Umlauf, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 1–16, https://doi.org/10.5194/ascmo-5-1-2019, https://doi.org/10.5194/ascmo-5-1-2019, 2019
Short summary
Short summary
Lightning in Alpine regions is associated with events such as thunderstorms,
extreme precipitation, high wind gusts, flash floods, and debris flows.
We present a statistical approach to predict lightning counts based on
numerical weather predictions. Lightning counts are considered on a grid
with 18 km mesh size. Skilful prediction is obtained for a forecast horizon
of 5 days over complex terrain.
Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 53–63, https://doi.org/10.5194/ascmo-4-53-2018, https://doi.org/10.5194/ascmo-4-53-2018, 2018
Short summary
Short summary
Millions of people worldwide are at a risk of coastal flooding, and this number will increase as the climate continues to change. This study analyzes how climate change affects future flood hazards. A new model that uses multiple climate variables for flood hazard is developed. For the case study of Norfolk, Virginia, the model predicts 23 cm higher flood levels relative to previous work. This work shows the importance of accounting for climate change in effectively managing coastal risks.
Amy Braverman, Snigdhansu Chatterjee, Megan Heyman, and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 93–105, https://doi.org/10.5194/ascmo-3-93-2017, https://doi.org/10.5194/ascmo-3-93-2017, 2017
Short summary
Short summary
In this paper, we introduce a method for expressing the agreement between climate model output time series and time series of observational data as a probability value. Our metric is an estimate of the probability that one would obtain two time series as similar as the ones under consideration, if the climate model and the observed series actually shared the same underlying climate signal.
Joshua P. French, Seth McGinnis, and Armin Schwartzman
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 67–92, https://doi.org/10.5194/ascmo-3-67-2017, https://doi.org/10.5194/ascmo-3-67-2017, 2017
Short summary
Short summary
We assess the mean temperature effect of global and regional climate model combinations for the North American Regional Climate Change Assessment Program using varying classes of linear regression models, including possible interaction effects. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We conclusively show that accounting for multiple comparisons is important for making proper inference.
László Varga and András Zempléni
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 55–66, https://doi.org/10.5194/ascmo-3-55-2017, https://doi.org/10.5194/ascmo-3-55-2017, 2017
Short summary
Short summary
This paper proposes a new generalisation of the block bootstrap methodology, which allows for any positive real number as expected block size. We use this bootstrap for determining the p values of a homogeneity test for copulas. The methods are applied to a temperature data set - we have found some significant changes in the dependence structure between the standardised temperature values of pairs of observation points within the Carpathian Basin.
Andrew Poppick, Elisabeth J. Moyer, and Michael L. Stein
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 33–53, https://doi.org/10.5194/ascmo-3-33-2017, https://doi.org/10.5194/ascmo-3-33-2017, 2017
Short summary
Short summary
We show that ostensibly empirical methods of analyzing trends in the global mean temperature record, which appear to de-emphasize assumptions, can nevertheless produce misleading inferences about trends and associated uncertainty. We illustrate how a simple but physically motivated trend model can provide better-fitting and more broadly applicable results, and show the importance of adequately characterizing internal variability for estimating trend uncertainty.
John Tipton, Mevin Hooten, and Simon Goring
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 1–16, https://doi.org/10.5194/ascmo-3-1-2017, https://doi.org/10.5194/ascmo-3-1-2017, 2017
Short summary
Short summary
We present a statistical framework for the reconstruction of historic temperature patterns from sparse, irregular data collected from observer stations. A common statistical technique for climate reconstruction uses modern era data as a set of temperature patterns that can be used to estimate the spatial temperature patterns. We present a framework for exploration of different assumptions about the sets of patterns used in the reconstruction while providing statistically rigorous estimates.
Georgina Davies and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 155–169, https://doi.org/10.5194/ascmo-2-155-2016, https://doi.org/10.5194/ascmo-2-155-2016, 2016
Short summary
Short summary
Sea surface temperature (SST) is a key component of global climate models, particularly in the tropical Pacific Ocean where El Niño and La Nina events have worldwide implications. In our paper, we analyse monthly SSTs in the Niño 3.4 region and find a transformation that removes a spatial mean-variance dependence for each month. For 10 out of 12 months in the year, the transformed monthly time series gave more accurate or as accurate forecasts than those from the untransformed time series.
Eric Gilleland, Melissa Bukovsky, Christopher L. Williams, Seth McGinnis, Caspar M. Ammann, Barbara G. Brown, and Linda O. Mearns
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 137–153, https://doi.org/10.5194/ascmo-2-137-2016, https://doi.org/10.5194/ascmo-2-137-2016, 2016
Short summary
Short summary
Several climate models are evaluated under current climate conditions to determine how well they are able to capture frequencies of severe-storm environments (conditions conducive for the formation of hail storms, tornadoes, etc.). They are found to underpredict the spatial extent of high-frequency areas (such as tornado alley), as well as underpredict the frequencies in the areas.
Whitney K. Huang, Michael L. Stein, David J. McInerney, Shanshan Sun, and Elisabeth J. Moyer
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 79–103, https://doi.org/10.5194/ascmo-2-79-2016, https://doi.org/10.5194/ascmo-2-79-2016, 2016
Sergei N. Rodionov
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 63–78, https://doi.org/10.5194/ascmo-2-63-2016, https://doi.org/10.5194/ascmo-2-63-2016, 2016
David Bolin, Arnoldo Frigessi, Peter Guttorp, Ola Haug, Elisabeth Orskaug, Ida Scheel, and Jonas Wallin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 39–47, https://doi.org/10.5194/ascmo-2-39-2016, https://doi.org/10.5194/ascmo-2-39-2016, 2016
Julie Bessac, Pierre Ailliot, Julien Cattiaux, and Valerie Monbet
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, https://doi.org/10.5194/ascmo-2-1-2016, https://doi.org/10.5194/ascmo-2-1-2016, 2016
Short summary
Short summary
Several multi-site stochastic generators of zonal and meridional components of wind are proposed in this paper. Various questions are explored, such as the modeling of the regime in a multi-site context, the extraction of relevant clusterings from extra variables or from the local wind data, and the link between weather types extracted from wind data and large-scale weather regimes. We also discuss the relative advantages of hidden and observed regime-switching models.
E. M. Schliep, A. E. Gelfand, and D. M. Holland
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 59–74, https://doi.org/10.5194/ascmo-1-59-2015, https://doi.org/10.5194/ascmo-1-59-2015, 2015
Short summary
Short summary
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the US motivates the need for advanced statistical models to predict air quality metrics. We propose a statistical model that jointly models ground-monitoring station data and satellite-obtained data allowing for temporal and spatial misalignment, missingness, and spatially and temporally varying correlation to enhance prediction of particulate matter.
R. Philbin and M. Jun
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 29–44, https://doi.org/10.5194/ascmo-1-29-2015, https://doi.org/10.5194/ascmo-1-29-2015, 2015
T. K. Doan, J. Haslett, and A. C. Parnell
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 15–27, https://doi.org/10.5194/ascmo-1-15-2015, https://doi.org/10.5194/ascmo-1-15-2015, 2015
W. B. Leeds, E. J. Moyer, and M. L. Stein
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, https://doi.org/10.5194/ascmo-1-1-2015, https://doi.org/10.5194/ascmo-1-1-2015, 2015
Cited articles
Boomsma, A.: Reporting Analyses of Covariance Structures, Struct. Equ. Modeling,
7, 461–483, https://doi.org/10.1207/S15328007SEM0703_6, 2000. a
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and
global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111, D12106,
https://doi.org/10.1029/2005JD006548, 2006. a
Cheng, C.-L. and van Ness, J. W.: Statistical regression with measurement error,
Kendall's Library of Statistics, Oxford University Press Inc., New York, ISBN 0340614617, 1999. a
Cubasch, U., Wuebbles, D., Chen, D., Facchini, M. C., Frame, D., Mahowald, N., and Winther, J.-G.: Introduction, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
DelSole, T., Trenary, L., Yan, X., and Tippett, M. K.: Confidence intervals in optimal fingerprinting.
Clim. Dynam., 52, 4111–4126, https://doi.org/10.1007/s00382-018-4356-3, 2019. a, b
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal
variability, Clim. Dyna,, 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Faes, C., Molenberghs, G., Aerts, M., Verbeke, G., and Kenward, M. K.:
The effective sample size and analternative small-sample degrees-of-freedom method,
Am. Stat., 63, 389–399, https://doi.org/10.1198/tast.2009.08196, 2009. a
Fetisova, E.: Towards a flexible statistical modelling by
latent factors for evaluation of simulated climate forcing effects, doctoral thesis, Department of Mathematics,
Stockholm University, http://su.diva-portal.org/smash/record.jsf?pid=diva2%3A1150197&dswid=9303 (last access: 11 November 2022), 2017. a, b
Feulner, G.: Are the most recent estimates for Maunder Minimum solar irradiance in agreement
with temperature reconstructions?, Geophys. Res. Lett., 38, L16706, https://doi.org/10.1029/2011GL048529, 2011. a
Finney, S. J., and DiStefano, C.: Non-normal and categorical data in structural equation modeling
in: Structural equation modeling: A second course, edited by: Hancock, G. R. and Mueller, R. O.,
Greenwich, Connecticut: Information Age Publishing, 269–314, 2006. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P.,
Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and
Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovermental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Fox, J.: TEACHER'S CORNER: Structural Equation Modeling With the sem Package in R, Struct. Equ. Modeling,
13, 465–486, https://doi.org/10.1207/s15328007sem1303_7, 2006. a
Gettelman, A., and Sherwood, S.C.: Processes Responsible for Cloud Feedback.
Current Climate Change Reports 2, 179–189, https://doi.org/10.1007/s40641-016-0052-8, 2016. a
Gillett, N. P., Weaver, A. J., Zwiers, F. W., and Flannigan, M. D.: Detecting the effect of climate change on Canadian forest fires,
Geophys. Res. Lett., 31, L18211, https://doi.org/10.1029/2004GL020876, 2004a. a
Gillett, N. P., Wehner, M. F., Tett, S. F., and Weaver, A. J.:
Testing the linearity of the response to combined greenhouse gas and sulfate aerosol forcing, Geophys.
Res. Lett., 31, L14201, https://doi.org/10.1029/2004GL020111, 2004b. a
Goosse, H.: Climate system dynamics and modelling, Cambridge university press, USA, ISBN 9781107445833, 2015. a
Hasselmann, K.: On the signal-to-noise problem in atmospheric response studies, edited by: Shaw, D. B.,
Royal Meteorological Society, 251–259, 1979. a
Hasselmann, K.: Optimal Fingerprints for the detection of time-dependent climate
change, J. Climate, 6, 1957–1971, https://doi.org/10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2, 1993. a
Hasselmann, K.: Multi-pattern fingerprint method for detection and attribution of climate change,
Clim. Dynam., 13, 601–611, https://doi.org/10.1007/s003820050185, 1997. a
Hegerl, G. C. and Zwiers, F.: Use of models in detection and attribution of climate
change, Adv. Rev., 2, 570–591, https://doi.org/10.1002/wcc.121, 2011. a, b
Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y., Marengo Orsini, J. A., Nicholls, N.,
Penner, J. E., and Stott, P. A.: Understanding and Attributing Climate Change, in: Climate Change 2007:
The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, edited by:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. a, b, c, d
Hegerl, G. C., Hoegh-Guldberg, O., Casassa, G., Hoerling, M. P., Kovats, R. S., Parmesan, C., Pierce, D. W.,
and Stott, P. A.: Good Practice Guidance Paper on Detection and Attribution Related to Anthropogenic Climate Change,
in: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution
of Anthropogenic Climate Change, edited by: Stocker, T. F., Field, C. B., Qin, D., Barros, V., Plattner, G.-K.,
Tignor, M., Midgley, P. M., and Ebi, K. L., IPCC Working Group I Technical Support Unit,
University of Bern, Bern, Switzerland, 2010. a
Hegerl, G. C., Luterbacher J., Gonźalez-Rouco, F., Tett, S. F. B., Crowley, T., and Xoplaki, E.:
Influence of human and natural forcing on European seasonal temperatures, Nat. Geosci., 4, 99–103,
https://doi.org/10.1038/NGEO1057, 2011. a
Hind, A. and Moberg, A.: Past millennial solar forcing magnitude.
A statistical hemispheric-scale climate model versus proxy data comparison,
Clim. Dynam., 41, 2527–2537, https://doi.org/10.1007/s00382-012-1526-6, 2013. a
Hind, A., Moberg, A., and Sundberg, R.: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing, Clim. Past, 8, 1355–1365, https://doi.org/10.5194/cp-8-1355-2012, 2012. a
Hu, L. and Bentler, P. M.: Fit indices in covariance structure modeling: sensitivity to
underparameterized model misspecification, Psychol. Meth., 3, 424–453, https://doi.org/10.1037/1082-989X.3.4.424,
1998. a
Hu, L. and Bentler, P. M.: Cutoff criteria for fit indexes in covariance structure analysis: Conventional
criteria versus new alternatives, Struct. Eq. Modeling, 6, 1–55,
https://doi.org/10.1080/10705519909540118, 1999. a, b
Huntingford, C., Stott, P. A., Allen, M. R., and Lambert, F. H.: Incorporating model uncertainty into attribution of observed temperature change,
Geophys. Res. Lett., 33, L05710, https://doi.org/10.1029/2005GL024831, 2006. a
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J.,
Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J.,
Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M., Mosley-Thompson, E., Overpeck, J. T.,
Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution palaeoclimatology of the last millennium: a review of current
status and future prospects, Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009. a
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017. a, b, c, d
Jöreskog, K. G.: A general approach to confirmatory maximum likelihood factor analysis, Psychometrika,
34, 183–202, https://doi.org/10.1007/BF02289343, 1969. a, b, c, d
Jöreskog, K. G.: Structural equation models in the social sciences: specification, estimation and testing,
Research rapport 16, University of Uppsala, Departments of Statistics, 33 pp., 1976. a
Kodra, A., Chatterjee, S., and Ganguly, A. R.: Exploring Granger causality between global average observed
time series of carbon dioxide and temperature, Theor. Appl. Climatol., 104, 325–335, https://doi.org/10.1007/s00704-010-0342-3, 2011. a
Kutzbach, J. E.: The nature of climate and climatic variations, QuaternaryRes., 6, 471–480,
https://doi.org/10.1016/0033-5894(76)90020-X, 1976. a
Lashgari, K., Moberg, A., and Brattström, G.: Evaluation of simulated responses to climate forcings:
a flexible statistical framework using confirmatory
factor analysis and structural equation modelling
– Part 2: Numerical experiment, Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271,
https://doi.org/10.5194/ascmo-8-249-2022, 2022. a
Levine, R. A. and Berliner, L. M.: Statistical principles for climate change studies, J. Climate, 12,
564–574, https://doi.org/10.1175/1520-0442(1999)012<0564:SPFCCS>2.0.CO;2, 1999. a
Li, Y., Chen, K., Yan, J., and Zhang, X.: Uncertainty in optimal fingerprinting is underestimated,
Environ. Res. Lett., 8, 084043. https://doi.org/10.1088/1748-9326/ac14ee, 2021. a
Liang, X. S.: Unraveling the cause-effect relation between time series,
Phys. Rev. E, 90, 052150, https://doi.org/10.1103/PhysRevE.90.052150, 2014. a
Liepert, B. G.: The physical concept of climate forcing, WIREs Clim. Change 1, 786-802,
https://doi.org/10.1002/wcc.75, 2010. a, b
Marvel, K., Schmidt, G. A., Shindell, D., Bonfils, C., LeGrande, A. N. Nazarenko, L., and Tsigaridis, K.:
Do responses to different anthropogenic forcings add linearly in climate models?, Environ. Res. Lett.,
10, 104010, https://doi.org/10.1088/1748-9326/10/10/104010, 2015. a, b
McGuffie, K. and Henderson-Sellers, A.: The climate modelling primer, 4th Edn., Chichester, Wiley Blackwell, 2014. a
Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C., Zwiers, F. W., Allen, M. R., and Marengo, J.:
Detection of climate change and attribution of causes, in: Climate Change 2001: The Scientific Basis,
Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.,
Cambridge University press, Cambridge, United Kingdom and New York, NY, USA, 881 pp., 2001. a
Moberg, A. and Hind, A.: Simulated seasonal temperatures 850–2005 for the seven PAGES 2k regions derived from the CESM last millennium ensemble, Dataset version 1, Bolin Centre Database, https://doi.org/10.17043/moberg-2019-cesm-1, 2019. a, b
Moberg, A., Sundberg, R., Grudd, H., and Hind, A.: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 3: Practical considerations, relaxed assumptions, and using tree-ring data to address the amplitude of solar forcing, Clim. Past, 11, 425–448, https://doi.org/10.5194/cp-11-425-2015, 2015. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature
change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117,
D08101, https://doi.org/10.1029/2011JD017187, 2012. a
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F.,
Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.018, 2013. a
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., Rosenbloom, N., Mai,
A., and Strand, G.: Climate variability and changes since 850 CE: An Ensemble Approach with the Community
Earth System Model, B. Am. Meteorol. Soc., 97, 735–754,
https://doi.org/10.1175/BAMS-D-14-00233.1, 2016. a, b
PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346,
https://doi.org/10.1038/NGEO1797, 2013. a, b, c
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015. a, b, c, d
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
http://www.R-project.org/ (last access: 11 November 2022), 2013. a
Ribes, A., Planton S., and Terray L.: Application of regularised optimal fingerprinting to attribution. Part I:
method, properties and idealised analysis, Clim. Dynam., 41, 2817–2836, https://doi.org/10.1007/s00382-013-1735-7, 2013. a
Rindskopf, D.: Structural Equation Models: empirical identification, Heywood cases, and related problems,
2nd Edn., Sociol. Method. Res., 13, 109–119, https://doi.org/10.1177/0049124184013001004, 1984. a
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D.,
Deyle, E., Glymour, C.., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J., van Nes, E. H., Peters, J., Quax, R.,
Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., and Zscheischler, J.:
Inferring causation from time series in Earth system sciences, Nat. Commun., 10, 2553, https://doi.org/10.1038/s41467-019-10105-3,
2019. a
Santer, B. D., Po-Chedley, S., Zelinka, M. D., Cvijanovic, I., Bonfils, C., Durack, P. J.,
Fu, Q., Kiehl, J., Mears, C., Painter, J., Pallotta, G., Solomon, S., Wentz, F. J., and Zou, C.-Z.:
Human influence on the seasonal cycle of tropospheric temperature, Science, p. 361, https://doi.org/10.1126/science.aas8806,
2018. a
Schurer, A. P., Mann, M. M., Tett, S. F. B., and Phipps, S. J.: Separating Forced from Chaotic Climate
variability over the Past Millenium, J. Climate, 26, 6954–6973, https://doi.org/10.1175/JCLI-D-12-00826.1, 2013. a
Schurer, A. P., Tett S. F., and Hegerl G. C.: Small influence of solar variability on climate over the past
millennium, Nat. Geosci., 7, 104–108, https://doi.org/10.1038/NGEO2040, 2014. a, b, c, d
Shapiro, S. S. and Wilk, M. B.: An analysis of variance test for normality (complete samples),
Biometrika, 52, 591–611, https://doi.org/10.1093/biomet/52.3-4.591, 1965. a
Shiogama, H., Stone, D., Emori, S., Takahashi, K., Mori, S., Maeda, A., Ishizaki, Y., and Allen, M. R.:
Predicting future uncertainty constraints on global warming projections, Sci. Rep., 6, 18903,
https://doi.org/10.1038/srep18903, 2016. a
Sörbom, D.: Model Modification, Psychometrika, 54, 371–384, https://doi.org/10.1007/BF02294623, 1989. a
Steiger, J. H., Shapiro, A., and Browne, M. W.:
On the multivariate asymptotic distribution of sequential Chi-square statistics, Psychometrika 50, 253–263,
https://doi.org/10.1007/BF02294104, 1985. a
Stips, A., Macias, D., Coughlan, C., Garcia-Gorriz, E., and Liang, X. S.: On the causal structure
between CO2 and global temperature, Sci. Rep., 6, 21691, https://doi.org/10.1038/srep21691, 2016.
a
Sundberg, R., Moberg, A., and Hind, A.: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 1: Theory, Clim. Past, 8, 1339–1353, https://doi.org/10.5194/cp-8-1339-2012, 2012. a, b
Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J., and Mitchell, J. F. B.: Causes of twentieth-century
temperature change near the Earth's surface, Nature, 399, 569–572, https://doi.org/10.1038/21164, 1999. a
Wall, M. M.: Spatial Structural Equation Modeling, in:
Handbook of Structural Equation Modeling, edited by: Hoyle, R. H., The Guilford press, New York, London, 674–689, ISBN 978-1-60623-077-0,
2012. a
Wigley, T. M. L. Karoly, D. J., Hegerl, G. C., Zwiers, F. W., Allen, M. R., and Marengo, J.:
Detection of the Greenhouse Effect in the Observations, chap. 8 in: Climate Change 1990:
The IPCC Scientific Assessment, Report prepared for Intergovernmental Panel on Climate Change by Working
Group I, edited by: Houghton, J. T., Jenkins, G. J., and Ephraums, J. J.,
Cambridge University Press, Cambridge, Great Britain, New York, NY, USA and Melbourne, Australia, 410 pp., 1990. a
Short summary
This work theoretically motivates an extension of the statistical model used in so-called detection and attribution studies to structural equation modelling. The application of one of the models suggested is exemplified in a small numerical study, whose aim was to check the assumptions typically placed on ensembles of climate model simulations when constructing mean sequences. he result of this study indicated that some ensembles for some regions may not satisfy the assumptions in question.
This work theoretically motivates an extension of the statistical model used in so-called...